## CS 229: Machine Learning (STATS 229)

Topics: statistical pattern recognition, linear and non-linear regression, non-parametric methods, exponential family, GLMs, support vector machines, kernel methods, model/feature selection, learning theory, VC dimension, clustering, density estimation, EM, dimensionality reduction, ICA, PCA, reinforcement learning and adaptive control, Markov decision processes, approximate dynamic programming, and policy search. Prerequisites: linear algebra, and basic probability and statistics.

Terms: Aut
| Units: 3-4

Instructors:
Boneh, D. (PI)
;
Ng, A. (PI)
;
Qu, S. (PI)
;
Avati, A. (TA)
;
Cho, P. (TA)
;
Dery, L. (TA)
;
Dwaracherla, V. (TA)
;
Genthial, G. (TA)
;
Haque, A. (TA)
;
Heereguppe Radhakrishna, S. (TA)
;
Huang, J. (TA)
;
Irvin, J. (TA)
;
Jiang, Q. (TA)
;
Koochak, Z. (TA)
;
Le Calonnec, Y. (TA)
;
Legros, F. (TA)
;
Li, H. (TA)
;
Liu, V. (TA)
;
Liu, X. (TA)
;
Mahajan, A. (TA)
;
Mehra, S. (TA)
;
Meng, C. (TA)
;
Oshri, B. (TA)
;
Patil, I. (TA)
;
Sankar, V. (TA)
;
Voisin, M. (TA)
;
Wu, Y. (TA)
;
Xie, Z. (TA)
;
Yue, C. (TA)
;
Zhang, B. (TA)

## CS 229A: Applied Machine Learning

You will learn to implement and apply machine learning algorithms. This course emphasizes practical skills, and focuses on giving you skills to make these algorithms work. You will learn about commonly used learning techniques including supervised learning algorithms (logistic regression, linear regression, SVM, neural networks/deep learning), unsupervised learning algorithms (k-means), as well as learn about specific applications such as anomaly detection and building recommender systems. This class is taught in the flipped-classroom format. You will watch videos and complete in-depth programming assignments and online quizzes at home, then come to class for discussion sections. This class will culminate in an open-ended final project, which the teaching team will help you on. Prerequisites: Programming at the level of CS106B or 106X, and basic linear algebra such as
Math 51.

Terms: Spr
| Units: 3-4

Instructors:
Ng, A. (PI)
;
Bensouda Mourri, Y. (TA)

## CS 229T: Statistical Learning Theory (STATS 231)

How do we formalize what it means for an algorithm to learn from data? This course focuses on developing mathematical tools for answering this question. We will present various common learning algorithms and prove theoretical guarantees about them. Topics include classical asymptotics, method of moments, generalization bounds via uniform convergence, kernel methods, online learning, and multi-armed bandits. Prerequisites: A solid background in linear algebra and probability theory, statistics and machine learning (
STATS 315A or
CS 229). Convex optimization (
EE 364A) is helpful but not required.

Last offered: Spring 2017

Filter Results: