2016-2017 2017-2018 2018-2019 2019-2020 2020-2021
Browse
by subject...
    Schedule
view...
 
  COVID-19 Scheduling Updates!
Due to recent announcements about Autumn Quarter (see the President's update), please expect ongoing changes to the class schedule.

1 - 7 of 7 results for: CS221

CS 81SI: AI Interpretability and Fairness

As black-box AI models grow increasingly relevant in human-centric applications, explainability and fairness becomes increasingly necessary for trust in adopting AI models. This seminar class introduces students to major problems in AI explainability and fairness, and explores key state-of-theart methods. Key technical topics include surrogate methods, feature visualization, network dissection, adversarial debiasing, and fairness metrics. There will be a survey of recent legal and policy trends. Each week a guest lecturer from AI research, industry, and related policy fields will present an open problem and solution, followed by a roundtable discussion with the class. Students have the opportunity to present a topic of interestnor application to their own projects (solo or in teams) in the final class. Code examples of each topic will be provided for students interested in a particular topic, but there will be no required coding components. Students who will benefit most from this clas more »
As black-box AI models grow increasingly relevant in human-centric applications, explainability and fairness becomes increasingly necessary for trust in adopting AI models. This seminar class introduces students to major problems in AI explainability and fairness, and explores key state-of-theart methods. Key technical topics include surrogate methods, feature visualization, network dissection, adversarial debiasing, and fairness metrics. There will be a survey of recent legal and policy trends. Each week a guest lecturer from AI research, industry, and related policy fields will present an open problem and solution, followed by a roundtable discussion with the class. Students have the opportunity to present a topic of interestnor application to their own projects (solo or in teams) in the final class. Code examples of each topic will be provided for students interested in a particular topic, but there will be no required coding components. Students who will benefit most from this class have exposure to AI, such as through projects and related coursework (e.g. statistics, CS221, CS230, CS229). Students who are pursuing subjects outside of the CS department (e.g. sciences, social sciences, humanities) with sufficient mathematical maturity are welcomed to apply. Enrollment limited to 20.
Last offered: Spring 2020

CS 221: Artificial Intelligence: Principles and Techniques

Artificial intelligence (AI) has had a huge impact in many areas, including medical diagnosis, speech recognition, robotics, web search, advertising, and scheduling. This course focuses on the foundational concepts that drive these applications. In short, AI is the mathematics of making good decisions given incomplete information (hence the need for probability) and limited computation (hence the need for algorithms). Specific topics include search, constraint satisfaction, game playing,n Markov decision processes, graphical models, machine learning, and logic. Prerequisites: CS 103 or CS 103B/X, CS 106B or CS 106X, CS 109, and CS 161 (algorithms, probability, and object-oriented programming in Python). We highly recommend comfort with these concepts before taking the course, as we will be building on them with little review.
Terms: Aut, Win, Spr | Units: 3-4

CS 224N: Natural Language Processing with Deep Learning (LINGUIST 284, SYMSYS 195N)

Methods for processing human language information and the underlying computational properties of natural languages. Focus on deep learning approaches: understanding, implementing, training, debugging, visualizing, and extending neural network models for a variety of language understanding tasks. Exploration of natural language tasks ranging from simple word level and syntactic processing to coreference, question answering, and machine translation. Examination of representative papers and systems and completion of a final project applying a complex neural network model to a large-scale NLP problem. Prerequisites: calculus and linear algebra; CS124, CS221, or CS229.
Terms: Win | Units: 3-4
Instructors: Manning, C. (PI)

CS 224S: Spoken Language Processing (LINGUIST 285)

Introduction to spoken language technology with an emphasis on dialogue and conversational systems. Deep learning and other methods for automatic speech recognition, speech synthesis, affect detection, dialogue management, and applications to digital assistants and spoken language understanding systems. Prerequisites: CS124, CS221, CS224N, or CS229.
Terms: Win | Units: 2-4
Instructors: Maas, A. (PI)

LINGUIST 284: Natural Language Processing with Deep Learning (CS 224N, SYMSYS 195N)

Methods for processing human language information and the underlying computational properties of natural languages. Focus on deep learning approaches: understanding, implementing, training, debugging, visualizing, and extending neural network models for a variety of language understanding tasks. Exploration of natural language tasks ranging from simple word level and syntactic processing to coreference, question answering, and machine translation. Examination of representative papers and systems and completion of a final project applying a complex neural network model to a large-scale NLP problem. Prerequisites: calculus and linear algebra; CS124, CS221, or CS229.
Terms: Win | Units: 3-4
Instructors: Manning, C. (PI)

LINGUIST 285: Spoken Language Processing (CS 224S)

Introduction to spoken language technology with an emphasis on dialogue and conversational systems. Deep learning and other methods for automatic speech recognition, speech synthesis, affect detection, dialogue management, and applications to digital assistants and spoken language understanding systems. Prerequisites: CS124, CS221, CS224N, or CS229.
Terms: Win | Units: 2-4
Instructors: Maas, A. (PI)

SYMSYS 195N: Natural Language Processing with Deep Learning (CS 224N, LINGUIST 284)

Methods for processing human language information and the underlying computational properties of natural languages. Focus on deep learning approaches: understanding, implementing, training, debugging, visualizing, and extending neural network models for a variety of language understanding tasks. Exploration of natural language tasks ranging from simple word level and syntactic processing to coreference, question answering, and machine translation. Examination of representative papers and systems and completion of a final project applying a complex neural network model to a large-scale NLP problem. Prerequisites: calculus and linear algebra; CS124, CS221, or CS229.
Terms: Win | Units: 3-4
Instructors: Manning, C. (PI)
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints