2015-2016 2016-2017 2017-2018 2018-2019 2019-2020
Browse
by subject...
    Schedule
view...
 

21 - 30 of 34 results for: CS106a

CS 448M: Making Making Machines for Makers

An introductory, project-based exploration of systems and processes for making things using computer-aided design and manufacturing, and an introduction to machines and machine tools. Emphasis will be placed on building novel machines and related software for use by "makers" and interactive machines. Course projects will encourage students to understand, build and modify/hack a sequence of machines: (1) an embroidery machine for custom textiles, (2) a paper cutting machine (with drag knife) for ornamental design, and (3) an XY plotter with Arduino controller. Through these projects students explore both (i) principles of operation (mechanical, stepper motors and servos, electrical control, computer software), and (ii) computer algorithms (trajectory, tool path, design). Current trends in interactive machines will be surveyed. The course will culminate in a final student-selected project. Prerequisite: CS106A or equivalent programming experience. Students should have a desire to make things.
Terms: Spr | Units: 3-4

EE 104: Introduction to Machine Learning

Introduction to machine learning. Formulation of supervised and unsupervised learning problems. Regression and classification. Data standardization and feature engineering. Loss function selection and its effect on learning. Regularization and its role in controlling complexity. Validation and overfitting. Robustness to outliers. Simple numerical implementation. Experiments on data from a wide variety of engineering and other disciplines. Undergraduate students should enroll for 5 units, and graduate students should enroll for 3 units. Prerequisites: EE 103; EE 178 or CS 109; CS106A or equivalent.
Terms: Spr | Units: 3-5
Instructors: Lall, S. (PI)

EE 260B: Principles of Robot Autonomy II (AA 174B, AA 274B, CS 237B)

This course teaches advanced principles for endowing mobile autonomous robots with capabilities to autonomously learn new skills and to physically interact with the environment and with humans. It also provides an overview of different robot system architectures. Concepts that will be covered in the course are: Reinforcement Learning and its relationship to optimal control, contact and dynamics models for prehensile and non-prehensile robot manipulation, imitation learning and human intent inference, as well as different system architectures and their verification. Students will earn the theoretical foundations for these concepts and implementnthem on mobile manipulation platforms. In homeworks, the Robot Operating System (ROS) will be used extensively for demonstrations and hands-on activities. Prerequisites: CS106A or equivalent, CME 100 or equivalent (for linear algebra), CME 106 or equivalent (for probability theory), and AA 171/274.
Terms: Win | Units: 3-4

ETHICSOC 182: Ethics, Public Policy, and Technological Change (COMM 180, CS 182, PHIL 82, POLISCI 182, PUBLPOL 182)

Examination of recent developments in computing technology and platforms through the lenses of philosophy, public policy, social science, and engineering. Course is organized around four main units: algorithmic decision-making and bias; data privacy and civil liberties; artificial intelligence and autonomous systems; and the power of private computing platforms. Each unit considers the promise, perils, rights, and responsibilities at play in technological developments. Prerequisite: CS106A.
Terms: Win | Units: 5 | UG Reqs: WAY-ER

IMMUNOL 207: Essential Methods in Computational and Systems Immunology

Introduction to the major underpinnings of systems immunology: first principles of development of computational approaches to immunological questions and research; details of the algorithms and statistical principles underlying commonly used tools; aspects of study design and analysis of data sets. Prerequisites: CS106a and CS161 strongly recommended.
Terms: Spr | Units: 3

LAW 4047: Ethics, Public Policy, and Technological Change

Examination of recent developments in computing technology and platforms through the lenses of philosophy, public policy, social science, and engineering. Course is organized around four main units: algorithmic decision-making and bias; data privacy and civil liberties; artificial intelligence and autonomous systems; and the power of private computing platforms. Each unit considers the promise, perils, rights, and responsibilities at play in technological developments. Prerequisite: CS106A. Elements used in grading: Attendance, class participation, written assignments, coding assignments, and final exam. Cross-listed with Communication ( COMM 180), Computer Science ( CS 182), Ethics in Society ( ETHICSOC 182), Philosophy ( PHIL 82), Political Science ( POLISCI 182), Public Policy ( PUBLPOL 182).
Terms: Win | Units: 4

ME 47: Press Play: Interactive Device Design

This course provides an introduction to the human-centered and technical workings behind interactive devices ranging from cell phones and video controllers to household appliances and smart cars. This is a hands-on, lab-based course; there will be no midterm or final. Course topics include electronics prototyping, interface prototyping, sensors and actuators, microcontroller development, physical prototyping and user testing. For the final project, students will build a working MP3 player prototype of their own design, using embedded microcontrollers, digital audio decoders, component sensors and other electronic hardware. Prior experience in programming, such as CS106A (or equivalent) or electronics, such as ENG40A (or equivalent) preferred. Students must attend the first class.
Last offered: Summer 2018

ME 216M: Introduction to the Design of Smart Products (CS 377N)

This course will focus on the technical mechatronic skills as well as the human factors and interaction design considerations required for the design of smart products and devices. Students will learn techniques for rapid prototyping of smart devices, best practices for physical interaction design, fundamentals of affordances and signifiers, and interaction across networked devices. Students will be introduced to design guidelines for integrating electrical components such as PCBs into mechanical assemblies and consider the physical form of devices, not just as enclosures but also as a central component of the smart product. Prerequisites include: CS106A and E40 highly recommended, or instructor approval.
Terms: Spr | Units: 3-4
Instructors: Follmer, S. (PI)

MED 253: Building for Digital Health (CS 342)

This project-based course will provide a comprehensive overview of key requirements in the design and full-stack implementation of a digital health research application. Several pre-vetted and approved projects from the Stanford School of Medicine will be available for students to select from and build. Student teams learn about all necessary approval processes to deploy a digital health solution (data privacy clearance/I RB approval, etc.) and be guided in the development of front-end and back-end infrastructure using best practices. The final project will be the presentation and deployment of a fully approved digital health research application. CS106A, CS106B, Recommended: CS193P/A, CS142, CS47, CS110. Limited enrollment for this course. Students need to submit their application online via: https://docs.google.com/forms/d/e/1FAIpQLSfENFanSf9TL8fvCS9RSLOQ90g_NF2_lETx3pQ8Y8BjxToR7g/viewform
Terms: Aut | Units: 3
Instructors: Aalami, O. (PI)

PHIL 82: Ethics, Public Policy, and Technological Change (COMM 180, CS 182, ETHICSOC 182, POLISCI 182, PUBLPOL 182)

Examination of recent developments in computing technology and platforms through the lenses of philosophy, public policy, social science, and engineering. Course is organized around four main units: algorithmic decision-making and bias; data privacy and civil liberties; artificial intelligence and autonomous systems; and the power of private computing platforms. Each unit considers the promise, perils, rights, and responsibilities at play in technological developments. Prerequisite: CS106A.
Terms: Win | Units: 5 | UG Reqs: WAY-ER
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints