2015-2016 2016-2017 2017-2018 2018-2019 2019-2020
by subject...

1 - 6 of 6 results for: CS 448

CS 448: Topics in Computer Graphics

Topic changes each quarter. Recent topics: computational photography, datannvisualization, character animation, virtual worlds, graphics architectures, advanced rendering. See http://graphics.stanford.edu/courses for offererings and prerequisites. May be repeated for credit.
Last offered: Autumn 2007 | Repeatable for credit

CS 448B: Data Visualization

Techniques and algorithms for creating effective visualizations based on principles from graphic design, visual art, perceptual psychology, and cognitive science. Topics: graphical perception, data and image models, visual encoding, graph and tree layout, color, animation, interaction techniques, automated design. Lectures, reading, and project. Prerequisite: one of 147, 148, or equivalent.
Terms: Spr | Units: 3 | Repeatable for credit

CS 448H: Topics in Computer Graphics: Domain-Specific Languages for Graphics, Imaging, and Beyond

Topic changes each quarter. Recent topics: computational photography, data visualization, character animation, virtual worlds, graphics architectures, advanced rendering. See http://graphics.stanford.edu/courses for offerings and prerequisites. May be repeated for credit.
Terms: Aut | Units: 3

CS 448I: Computational Imaging and Display (EE 367)

Spawned by rapid advances in optical fabrication and digital processing power, a new generation of imaging technology is emerging: computational cameras at the convergence of applied mathematics, optics, and high-performance computing. Similar trends are observed for modern displays pushing the boundaries of resolution, contrast, 3D capabilities, and immersive experiences through the co-design of optics, electronics, and computation. This course serves as an introduction to the emerging field of computational imaging and displays. Students will learn to master bits and photons.
Terms: Win | Units: 3

CS 448J: Concepts and Algorithms of Scientific and Visual Computing

This course covers a selection of fundamental concepts and algorithms for scientific and visual computing. Based on prior knowledge in basis calculus, linear algebra, numerical interpolation and optimization, this course introduces the concept of the phase space, variational principles, methods for ordinary and partial differential equations, Fourier analysis, and multi- scale modeling. The lecture is algorithmically oriented, aiming to enable the students to develop efficient solutions for practically relevant problems, based on solid theoretical foundations and mathematically precise modeling. It covers practical applications, like the simulation of rigid and deformable objects, fibers, fluids, molecular dynamics, signal/image analysis and processing, as well as wavelet-based modeling on different scales. Prerequisites: Basic knowledge such as taught in MATH 41, MATH 42, CS 103, or CS 205A.
Terms: Aut | Units: 3

CS 448Z: Physically Based Animation and Sound

Intermediate level, emphasizing physically based simulation techniques for computer animation and synchronized sound synthesis. Topics vary from year to year, but include integrated approaches to visual and auditory simulation of rigid bodies, deformable solids, collision detection and contact resolution, fracture, fluids and gases, and virtual characters. Written assignments and programming projects. Prerequisite: None. Recommended: Computer graphics ( CS 148 and CS 248), and/or scientific computing ( CS 205).
Terms: Aut | Units: 3-4
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
updating results...
UG Requirements (GERs)
updating results...
updating results...
updating results...
© Stanford University | Terms of Use | Copyright Complaints