2014-2015 2015-2016 2016-2017 2017-2018 2018-2019
Browse
by subject...
    Schedule
view...
 

61 - 70 of 95 results for: CS ; Currently searching winter courses. You can expand your search to include all quarters

CS 254: Computational Complexity

An introduction to computational complexity theory. Topics include the P versus NP problem; diagonalization; space complexity: PSPACE, Savitch's theorem, and NL=coNL; counting problems and #P-completeness; circuit complexity; pseudorandomness and derandomization; complexity of approximation; quantum computing; complexity barriers. Prerequisites: 154 or equivalent; mathematical maturity.
Terms: Win | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: Tan, L. (PI)

CS 255: Introduction to Cryptography

For advanced undergraduates and graduate students. Theory and practice of cryptographic techniques used in computer security. Topics: encryption (symmetric and public key), digital signatures, data integrity, authentication, key management, PKI, zero-knowledge protocols, and real-world applications. Prerequisite: basic probability theory.
Terms: Win | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: Boneh, D. (PI)

CS 261: Optimization and Algorithmic Paradigms

Algorithms for network optimization: max-flow, min-cost flow, matching, assignment, and min-cut problems. Introduction to linear programming. Use of LP duality for design and analysis of algorithms. Approximation algorithms for NP-complete problems such as Steiner Trees, Traveling Salesman, and scheduling problems. Randomized algorithms. Introduction to sub-linear algorithms and decision making under uncertainty. Prerequisite: 161 or equivalent.
Terms: Win | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: Goel, A. (PI)

CS 270: Modeling Biomedical Systems: Ontology, Terminology, Problem Solving (BIOMEDIN 210)

Methods for modeling biomedical systems and for building model-based software systems. Emphasis is on intelligent systems for decision support and Semantic Web applications. Topics: knowledge representation, controlled terminologies, ontologies, reusable problem solvers, and knowledge acquisition. Students learn about current trends in the development of advanced biomedical software systems and acquire hands-on experience with several systems and tools. Prerequisites: CS106A, basic familiarity with biology, probability, and logic.
Terms: Win | Units: 3 | Grading: Letter or Credit/No Credit

CS 273A: The Human Genome Source Code (BIOMEDIN 273A, DBIO 273A)

A computational introduction to the most amazing programming language on the planet: your genome. Topics include genome sequencing (assembling source code from code fragments); the human genome functional landscape: variable assignments (genes), control-flow logic (gene regulation) and run-time stack (epigenomics); human disease and personalized genomics (as a hunt for bugs in the human code); genome editing (code injection) to cure the incurable; and the source code behind amazing animal adaptations. Algorithmic approaches will introduce ideas from computational genomics, machine learning and natural language processing. Course includes primers on molecular biology, and text processing languages. No prerequisites.
Terms: Win | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: Bejerano, G. (PI)

CS 275: Translational Bioinformatics (BIOE 217, BIOMEDIN 217, GENE 217)

Computational methods for the translation of biomedical data into diagnostic, prognostic, and therapeutic applications in medicine. Topics: multi-scale omics data generation and analysis, utility and limitations of public biomedical resources, machine learning and data mining, issues and opportunities in drug discovery, and mobile/digital health solutions. Case studies and course project. Prerequisites: programming ability at the level of CS 106A and familiarity with biology and statistics.
Terms: Win | Units: 4 | Grading: Medical Option (Med-Ltr-CR/NC)

CS 275A: Symbolic Musical Information (MUSIC 253)

Focus on symbolic data for music applications including advanced notation systems, optical music recognition, musical data conversion, and internal structure of MIDI files.
Terms: Win | Units: 2-4 | Grading: Letter or Credit/No Credit

CS 279: Computational Biology: Structure and Organization of Biomolecules and Cells (BIOE 279, BIOMEDIN 279, BIOPHYS 279, CME 279)

Computational techniques for investigating and designing the three-dimensional structure and dynamics of biomolecules and cells. These computational methods play an increasingly important role in drug discovery, medicine, bioengineering, and molecular biology. Course topics include protein structure prediction, protein design, drug screening, molecular simulation, cellular-level simulation, image analysis for microscopy, and methods for solving structures from crystallography and electron microscopy data. Prerequisites: elementary programming background ( CS 106A or equivalent) and an introductory course in biology or biochemistry.
Terms: Win | Units: 3 | Grading: Letter or Credit/No Credit

CS 334A: Convex Optimization I (CME 364A, EE 364A)

Convex sets, functions, and optimization problems. The basics of convex analysis and theory of convex programming: optimality conditions, duality theory, theorems of alternative, and applications. Least-squares, linear and quadratic programs, semidefinite programming, and geometric programming. Numerical algorithms for smooth and equality constrained problems; interior-point methods for inequality constrained problems. Applications to signal processing, communications, control, analog and digital circuit design, computational geometry, statistics, machine learning, and mechanical engineering. Prerequisite: linear algebra such as EE263, basic probability.
Terms: Win | Units: 3 | Grading: Letter or Credit/No Credit

CS 337: AI-Assisted Care (MED 277)

AI has been advancing quickly, with its impact everywhere. In healthcare, innovation in AI could help transforming of our healthcare system. This course offers a diverse set of research projects focusing on cutting edge computer vision and machine learning technologies to solve some of healthcare's most important problems. The teaching team and teaching assistants will work closely with students on research projects in this area. Research projects include Care for Senior at Senior Home, Surgical Quality Analysis, AI Assisted Parenting, Burn Analysis & Assessment and more. AI areas include Video Understanding, Image Classification, Objected Detection, Segmentation, Action Recognition, Deep Learning, Reinforcement Learning, HCI, and more. The course is open to students in both school of medicine and school of engineering.
Terms: Aut, Win, Spr | Units: 1-4 | Grading: Medical Option (Med-Ltr-CR/NC)
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints