2014-2015 2015-2016 2016-2017 2017-2018 2018-2019
Browse
by subject...
    Schedule
view...
 

41 - 50 of 96 results for: CS ; Currently searching winter courses. You can expand your search to include all quarters

CS 196: Computer Consulting (VPTL 196)

Focus is on Macintosh and Windows operating system maintenance and troubleshooting through hardware and software foundation and concepts. Topics include operating systems, networking, security, troubleshooting methodology with emphasis on Stanford's computing environment. Not a programming course. Prerequisite: 1C or equivalent.
Terms: Win, Spr | Units: 2 | Grading: Satisfactory/No Credit
Instructors: Smith, S. (PI)

CS 198: Teaching Computer Science

Students lead a discussion section of 106A while learning how to teach a programming language at the introductory level. Focus is on teaching skills, techniques, and course specifics. Application and interview required; see http://cs198.stanford.edu.
Terms: Aut, Win, Spr | Units: 3-4 | Grading: Satisfactory/No Credit

CS 198B: Additional Topics in Teaching Computer Science

Students build on the teaching skills developed in CS198. Focus is on techniques used to teach topics covered in CS106B. Prerequisite: successful completion of CS198.
Terms: Aut, Win, Spr | Units: 1 | Grading: Satisfactory/No Credit

CS 199: Independent Work

Special study under faculty direction, usually leading to a written report. Letter grade; if not appropriate, enroll in 199P.
Terms: Aut, Win, Spr, Sum | Units: 1-6 | Repeatable for credit | Grading: Letter (ABCD/NP)
Instructors: Agrawala, M. (PI) ; Aiken, A. (PI) ; Akeley, K. (PI) ; Altman, R. (PI) ; Bailis, P. (PI) ; Baker, M. (PI) ; Barbagli, F. (PI) ; Batzoglou, S. (PI) ; Bejerano, G. (PI) ; Bernstein, M. (PI) ; Blikstein, P. (PI) ; Boneh, D. (PI) ; Borenstein, J. (PI) ; Boyd, S. (PI) ; Bradski, G. (PI) ; Brafman, R. (PI) ; Brunskill, E. (PI) ; Cain, J. (PI) ; Cao, P. (PI) ; Casado, M. (PI) ; Charikar, M. (PI) ; Cheriton, D. (PI) ; Cooper, S. (PI) ; Dally, B. (PI) ; De-Micheli, G. (PI) ; Dill, D. (PI) ; Dror, R. (PI) ; Durumeric, Z. (PI) ; Dwork, C. (PI) ; Engler, D. (PI) ; Ermon, S. (PI) ; Fatahalian, K. (PI) ; Fedkiw, R. (PI) ; Feigenbaum, E. (PI) ; Fikes, R. (PI) ; Fisher, K. (PI) ; Fogg, B. (PI) ; Fox, A. (PI) ; Garcia-Molina, H. (PI) ; Genesereth, M. (PI) ; Gill, J. (PI) ; Girod, B. (PI) ; Goel, A. (PI) ; Goodman, N. (PI) ; Grimes, A. (PI) ; Guibas, L. (PI) ; Hanrahan, P. (PI) ; Heer, J. (PI) ; Hennessy, J. (PI) ; Horowitz, M. (PI) ; James, D. (PI) ; Johari, R. (PI) ; Johnson, M. (PI) ; Jurafsky, D. (PI) ; Katti, S. (PI) ; Kay, M. (PI) ; Khatib, O. (PI) ; Klemmer, S. (PI) ; Kochenderfer, M. (PI) ; Koller, D. (PI) ; Koltun, V. (PI) ; Konolige, K. (PI) ; Kozyrakis, C. (PI) ; Kundaje, A. (PI) ; Lam, M. (PI) ; Landay, J. (PI) ; Latombe, J. (PI) ; Lee, C. (PI) ; Leskovec, J. (PI) ; Levis, P. (PI) ; Levitt, M. (PI) ; Levoy, M. (PI) ; Li, F. (PI) ; Liang, P. (PI) ; Lin, H. (PI) ; Manna, Z. (PI) ; Manning, C. (PI) ; Mazieres, D. (PI) ; McCarthy, J. (PI) ; McKeown, N. (PI) ; Mitchell, J. (PI) ; Mitra, S. (PI) ; Motwani, R. (PI) ; Musen, M. (PI) ; Nass, C. (PI) ; Nayak, P. (PI) ; Ng, A. (PI) ; Niebles Duque, J. (PI) ; Nilsson, N. (PI) ; Olukotun, O. (PI) ; Ousterhout, J. (PI) ; Paepcke, A. (PI) ; Pande, V. (PI) ; Parlante, N. (PI) ; Pea, R. (PI) ; Piech, C. (PI) ; Plotkin, S. (PI) ; Plummer, R. (PI) ; Potts, C. (PI) ; Prabhakar, B. (PI) ; Pratt, V. (PI) ; Raghavan, P. (PI) ; Rajaraman, A. (PI) ; Re, C. (PI) ; Reingold, O. (PI) ; Roberts, E. (PI) ; Rosenblum, M. (PI) ; Roughgarden, T. (PI) ; Sadigh, D. (PI) ; Sahami, M. (PI) ; Salisbury, J. (PI) ; Savarese, S. (PI) ; Saxena, A. (PI) ; Schwarz, K. (PI) ; Shoham, Y. (PI) ; Stepp, M. (PI) ; Thrun, S. (PI) ; Tobagi, F. (PI) ; Trevisan, L. (PI) ; Ullman, J. (PI) ; Valiant, G. (PI) ; Van Roy, B. (PI) ; Widom, J. (PI) ; Wiederhold, G. (PI) ; Williams, R. (PI) ; Williams, V. (PI) ; Winograd, T. (PI) ; Winstein, K. (PI) ; Wodtke, C. (PI) ; Wootters, M. (PI) ; Young, P. (PI) ; Zaharia, M. (PI) ; Zelenski, J. (PI)

CS 199P: Independent Work

(Staff)
Terms: Aut, Win, Spr, Sum | Units: 1-6 | Repeatable for credit | Grading: Satisfactory/No Credit
Instructors: Agrawala, M. (PI) ; Aiken, A. (PI) ; Altman, R. (PI) ; Angst, R. (PI) ; Baker, M. (PI) ; Barrett, C. (PI) ; Batzoglou, S. (PI) ; Bejerano, G. (PI) ; Bernstein, M. (PI) ; Blikstein, P. (PI) ; Boneh, D. (PI) ; Borenstein, J. (PI) ; Bradski, G. (PI) ; Brafman, R. (PI) ; Cain, J. (PI) ; Cao, P. (PI) ; Charikar, M. (PI) ; Cheriton, D. (PI) ; Dally, B. (PI) ; De-Micheli, G. (PI) ; Dill, D. (PI) ; Dror, R. (PI) ; Durumeric, Z. (PI) ; Dwork, C. (PI) ; Engler, D. (PI) ; Fedkiw, R. (PI) ; Feigenbaum, E. (PI) ; Fikes, R. (PI) ; Fisher, K. (PI) ; Fogg, B. (PI) ; Fox, A. (PI) ; Garcia-Molina, H. (PI) ; Genesereth, M. (PI) ; Gill, J. (PI) ; Girod, B. (PI) ; Goel, A. (PI) ; Goodman, N. (PI) ; Guibas, L. (PI) ; Hanrahan, P. (PI) ; Hennessy, J. (PI) ; Horowitz, M. (PI) ; James, D. (PI) ; Johari, R. (PI) ; Johnson, M. (PI) ; Jurafsky, D. (PI) ; Katti, S. (PI) ; Kay, M. (PI) ; Khatib, O. (PI) ; Klemmer, S. (PI) ; Kochenderfer, M. (PI) ; Koller, D. (PI) ; Koltun, V. (PI) ; Konolige, K. (PI) ; Kozyrakis, C. (PI) ; Kundaje, A. (PI) ; Lam, M. (PI) ; Landay, J. (PI) ; Latombe, J. (PI) ; Lee, C. (PI) ; Leskovec, J. (PI) ; Levis, P. (PI) ; Levitt, M. (PI) ; Levoy, M. (PI) ; Li, F. (PI) ; Liang, P. (PI) ; Lin, H. (PI) ; Manna, Z. (PI) ; Manning, C. (PI) ; Mazieres, D. (PI) ; McCarthy, J. (PI) ; McKeown, N. (PI) ; Mitchell, J. (PI) ; Mitra, S. (PI) ; Motwani, R. (PI) ; Musen, M. (PI) ; Nass, C. (PI) ; Nayak, P. (PI) ; Ng, A. (PI) ; Nilsson, N. (PI) ; Olukotun, O. (PI) ; Ousterhout, J. (PI) ; Parlante, N. (PI) ; Piech, C. (PI) ; Plotkin, S. (PI) ; Plummer, R. (PI) ; Prabhakar, B. (PI) ; Pratt, V. (PI) ; Raghavan, P. (PI) ; Rajaraman, A. (PI) ; Re, C. (PI) ; Reingold, O. (PI) ; Roberts, E. (PI) ; Rosenblum, M. (PI) ; Roughgarden, T. (PI) ; Sahami, M. (PI) ; Salisbury, J. (PI) ; Savarese, S. (PI) ; Saxena, A. (PI) ; Schwarz, K. (PI) ; Shoham, Y. (PI) ; Socher, R. (PI) ; Stepp, M. (PI) ; Thrun, S. (PI) ; Tobagi, F. (PI) ; Trevisan, L. (PI) ; Ullman, J. (PI) ; Valiant, G. (PI) ; Van Roy, B. (PI) ; Widom, J. (PI) ; Wiederhold, G. (PI) ; Williams, R. (PI) ; Williams, V. (PI) ; Winograd, T. (PI) ; Winstein, K. (PI) ; Wootters, M. (PI) ; Young, P. (PI) ; Zaharia, M. (PI) ; Zelenski, J. (PI) ; Zou, J. (PI)

CS 205L: Continuous Mathematical Methods with an Emphasis on Machine Learning

Terms: Win | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: Fedkiw, R. (PI)

CS 210A: Software Project Experience with Corporate Partners

Two-quarter project course. Focus is on real-world software development. Corporate partners seed projects with loosely defined challenges from their R&D labs; students innovate to build their own compelling software solutions. Student teams are treated as start-up companies with a budget and a technical advisory board comprised of instructional staff and corporate liaisons. Teams will typically travel to the corporate headquarters of their collaborating partner, meaning some teams will travel internationally. Open loft classroom format such as found in Silicon Valley software companies. Exposure to: current practices in software engineering; techniques for stimulating innovation; significant development experience with creative freedoms; working in groups; real-world software engineering challenges; public presentation of technical work; creating written descriptions of technical work. Prerequisites: CS 109 and 110.
Terms: Win | Units: 3-4 | Grading: Letter (ABCD/NP)

CS 223A: Introduction to Robotics (ME 320)

Robotics foundations in modeling, design, planning, and control. Class covers relevant results from geometry, kinematics, statics, dynamics, motion planning, and control, providing the basic methodologies and tools in robotics research and applications. Concepts and models are illustrated through physical robot platforms, interactive robot simulations, and video segments relevant to historical research developments or to emerging application areas in the field. Recommended: matrix algebra.
Terms: Win | Units: 3 | Grading: Letter or Credit/No Credit

CS 224N: Natural Language Processing with Deep Learning (LINGUIST 284)

Methods for processing human language information and the underlying computational properties of natural languages. Focus on deep learning approaches: understanding, implementing, training, debugging, visualizing, and extending neural network models for a variety of language understanding tasks. Exploration of natural language tasks ranging from simple word level and syntactic processing to coreference, question answering, and machine translation. Examination of representative papers and systems and completion of a final project applying a complex neural network model to a large-scale NLP problem. Prerequisites: calculus and linear algebra; CS124 or CS121/221.
Terms: Win | Units: 3-4 | Grading: Letter or Credit/No Credit
Instructors: Manning, C. (PI)

CS 228: Probabilistic Graphical Models: Principles and Techniques

Probabilistic graphical modeling languages for representing complex domains, algorithms for reasoning using these representations, and learning these representations from data. Topics include: Bayesian and Markov networks, extensions to temporal modeling such as hidden Markov models and dynamic Bayesian networks, exact and approximate probabilistic inference algorithms, and methods for learning models from data. Also included are sample applications to various domains including speech recognition, biological modeling and discovery, medical diagnosis, message encoding, vision, and robot motion planning. Prerequisites: basic probability theory and algorithm design and analysis.
Terms: Win | Units: 3-4 | Grading: Letter or Credit/No Credit
Instructors: Ermon, S. (PI)
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints