2014-2015 2015-2016 2016-2017 2017-2018 2018-2019
Browse
by subject...
    Schedule
view...
 

1 - 10 of 237 results for: CS

CS 1C: Introduction to Computing at Stanford

For those with limited experience with computers or who want to learn more about Stanford's computing environment. Topics include: computer maintenance and security, computing resources, Internet privacy, and copyright law. One-hour lecture/demonstration in dormitory clusters prepared and administered weekly by the Resident Computer Consultant (RCC). Final project. Not a programming course.
Terms: Aut | Units: 1 | Grading: Satisfactory/No Credit
Instructors: Smith, S. (PI)

CS 1U: Practical Unix

A practical introduction to using the Unix operating system with a focus on Linux command line skills. Class will consist of video tutorials and weekly hands-on lab sections. Topics include: grep and regular expressions, ZSH, Vim and Emacs, basic and advanced GDB features, permissions, working with the file system, revision control, Unix utilities, environment customization, and using Python for shell scripts. Topics may be added, given sufficient interest. Course website: http://cs1u.stanford.edu
Terms: Aut, Win, Spr | Units: 1 | Grading: Satisfactory/No Credit

CS 9: Problem-Solving for the CS Technical Interview

This course will prepare students to interview for software engineering and related internships and full-time positions in industry. Drawing on multiple sources of actual interview questions, students will learn key problem-solving strategies specific to the technical/coding interview. Students will be encouraged to synthesize information they have learned across different courses in the major. Emphasis will be on the oral and combination written-oral modes of communication common in coding interviews, but which are unfamiliar settings for problem solving for many students. Prerequisites: CS 106B or X.
Terms: Aut | Units: 1 | Grading: Satisfactory/No Credit

CS 21SI: AI for Social Good

Students will learn about and apply cutting-edge artificial intelligence techniques to real-world social good spaces (such as healthcare, government, education, and environment). Taught jointly by CS+Social Good and the Stanford AI Group, the aim of the class is to empower students to apply these techniques outside of the classroom. The class will focus on techniques from machine learning and deep learning, including regression, support vector machines (SVMs), neural networks, convolutional neural networks (CNNs), and recurrent neural networks (RNNs). The course alternates between lectures on machine learning theory and discussions with invited speakers, who will challenge students to apply techniques in their social good domains. Students complete weekly coding assignments reinforcing machine learning concepts and applications. Prerequisites: programming experience at the level of CS107, mathematical fluency at the level of CS103, comfort with probability at the level of CS109 (or equivalent). Application required for enrollment.
Terms: Spr | Units: 2 | Grading: Satisfactory/No Credit
Instructors: Piech, C. (PI)

CS 22A: The Social & Economic Impact of Artificial Intelligence (IPS 200)

Recent advances in computing may place us at the threshold of a unique turning point in human history. Soon we are likely to entrust management of our environment, economy, security, infrastructure, food production, healthcare, and to a large degree even our personal activities, to artificially intelligent computer systems. The prospect of "turning over the keys" to increasingly autonomous systems raises many complex and troubling questions. How will society respond as versatile robots and machine-learning systems displace an ever-expanding spectrum of blue- and white-collar workers? Will the benefits of this technological revolution be broadly distributed or accrue to a lucky few? How can we ensure that these systems respect our ethical principles when they make decisions at speeds and for rationales that exceed our ability to comprehend? What, if any, legal rights and responsibilities should we grant them? And should we regard them merely as sophisticated tools or as a newly emerging form of life? The goal of CS22 is to equip students with the intellectual tools, ethical foundation, and psychological framework to successfully navigate the coming age of intelligent machines.
Terms: Win | Units: 1 | Grading: Satisfactory/No Credit
Instructors: Kaplan, J. (PI)

CS 42: Callback Me Maybe: Contemporary Javascript

Introduction to the JavaScript programming language with a focus on building contemporary applications. This course consists of in-class activities and programming assignments that challenge students to create functional web apps (e.g. Yelp, Piazza, Instagram). Topics include syntax/semantics, event-based programming, document object model (DOM), application programming interfaces (APIs), asynchronous JavaScript and XML (AJAX), Node.js, and MongoDB. Prerequisite: CS 107.
Terms: Win, Spr | Units: 2 | Grading: Satisfactory/No Credit

CS 43: Functional Programming in Clojure

Clojure is a dialect of Lisp that runs on the JVM, CLR, or Javascript engine. This course explores the fundamentals and philosophy of Clojure, with emphasis on the benefits of immutability and functional programming that make it such a powerful and fun language. Topics include: immutability, functional programming (function composition, higher order functions), concurrency (atoms, promises, futures, actors, Software Transactional Memory, etc), LISP (REPL-driven development, homoiconicity, macros), and interop (between Clojure code and code native to the host VM). The course also explores design paradigms and looks at the differences between functional programing and object-oriented programing, as well as bottom-up versus top-down design.
Terms: Win | Units: 2 | Grading: Satisfactory/No Credit
Instructors: Cain, J. (PI)

CS 45N: Computers and Photography: From Capture to Sharing

Preference to freshmen with experience in photography and use of computers. Elements of photography, such as lighting, focus, depth of field, aperture, and composition. How a photographer makes photos available for computer viewing, reliably stores them, organizes them, tags them, searches them, and distributes them online. No programming experience required. Digital SLRs and editing software will be provided to those students who do not wish to use their own.
Terms: Aut, Spr | Units: 3-4 | UG Reqs: WAY-CE | Grading: Letter or Credit/No Credit

CS 47SI: Cross-Platform Mobile Development

The fundamentals of cross-platform mobile application development using the React Native framework (RN). Primary focus on developing best practices in creating apps for both iOS and Android by using Javascript and existing web + mobile development paradigms. Students will explore the unique aspects that made RN a primary tool for mobile development within Facebook, Instagram, Airbnb, Walmart, Tesla, and UberEats. Skills developed over the course will be consolidated by the completion of a final project. Required Prerequisites ¿ at least one of the following: CS142, CS193P, CS193A (Web/Mobile development or heavy project-based class experience). Apply here: https://goo.gl/forms/sF3TDYd5mN7V8f1W2 by January 13th (Saturday of week one)
Terms: Win | Units: 2 | Grading: Credit/No Credit
Instructors: Landay, J. (PI)

CS 49N: Using Bits to Control Atoms

This is a crash course in how to use a stripped-down computer system about the size of a credit card (the rasberry pi computer) to control as many different sensors as we can implement in ten weeks, including LEDs, motion sensors, light controllers, and accelerometers. The ability to fearlessly grab a set of hardware devices, examine the data sheet to see how to use it, and stitch them together using simple code is a secret weapon that software-only people lack, and allows you to build many interesting gadgets. We will start with a "bare metal'' system --- no operating system, no support --- and teach you how to read device data sheets describing sensors and write the minimal code needed to control them (including how to debug when things go wrong, as they always do). This course differs from most in that it is deliberately mostly about what and why rather than how --- our hope is that the things you are able at the end will inspire you to follow the rest of the CS curriculum to understand better how things you've used work. Prerequisites: knowledge of the C programming language. A Linux or Mac laptop that you are comfortable coding on.
Terms: Spr | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: Engler, D. (PI)
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints