2016-2017 2017-2018 2018-2019 2019-2020 2020-2021
Browse
by subject...
    Schedule
view...
 
  COVID-19 Scheduling Updates!
Due to recent announcements about Autumn Quarter (see the President's update), please expect ongoing changes to the class schedule.

241 - 250 of 310 results for: CS

CS 354: Topics in Intractability: Unfulfilled Algorithmic Fantasies

Over the past 45 years, understanding NP-hardness has been an amazingly useful tool for algorithm designers. This course will expose students to additional ways to reason about obstacles for designing efficient algorithms. Topics will include unconditional lower bounds (query- and communication-complexity), total problems, Unique Games, average-case complexity, and fine-grained complexity. Prerequisites: CS 161 or equivalent. CS 254 recommended but not required.
Last offered: Spring 2019

CS 355: Advanced Topics in Cryptography

Topics: Pseudo randomness, multiparty computation, pairing-based and lattice-based cryptography, zero knowledge protocols, and new encryption and integrity paradigms. May be repeated for credit. Prerequisite: CS255.
Terms: Spr | Units: 3 | Repeatable for credit

CS 356: Topics in Computer and Network Security

Research seminar covering foundational work and current topics in computer and network security. Students will read and discuss published research papers as well as complete an original research project in small groups. Open to Ph.D. and masters students as well as advanced undergraduate students. Prerequisites: While the course has no official prerequisites, students need a mature understanding of software systems and networks to be successful. We strongly encourage students to first take CS155: Computer and Network Security.
Terms: Aut | Units: 3

CS 357: Advanced Topics in Formal Methods

Topics vary annually. Recent offerings have covered the foundations of static analysis, including decision procedures for important theories (SAT, linear integer constraints, SMT solvers), model checking, abstract interpretation, and constraint-based analysis. May be repeated for credit.
Last offered: Autumn 2019 | Repeatable for credit

CS 357S: Formal Methods for Computer Systems

The complexity of modern computer systems requires rigorous and systematic verification/validation techniques to evaluate their ability to correctly and securely support application programs. To this end, a growing body of work in both industry and academia leverages formal methods techniques to solve computer systems challenges. This course is a research seminar that will cover foundational work and current topics in the application of formal methods-style techniques (some possible examples include SAT/SMT, model checking, symbolic execution, theorem proving, program synthesis, fuzzing) to reliable and secure computer systems design. The course can be thought of as an applied formal methods course where the application is reliable and secure architecture, microarchitecture, and distributed systems design. Prior formal methods experience is not necessary. Students will read and discuss published research papers and complete an original research project. Open to PhD and masters students as well as advanced undergraduate students. Prerequisites: EE180 Digital Systems Architecture or comparable course, or consent of instructor.
Terms: Aut | Units: 3

CS 358: Topics in Programming Language Theory

Advanced material is often taught for the first time as a topics course, perhaps by a faculty member visiting from another institution. May be repeated for credit.
Last offered: Spring 2019 | Repeatable for credit

CS 358A: Programming Language Foundations

This course introduces advanced formal systems and programming languages as well as techniques to reason formally about them. Possible systems of study include: the lambda calculus, System F, the Pi and Spi calculi, simply-typed languages, security type systems for non-interference, robust safety, linear types, ownership types, session types, logical relations and semantic models etc.
Terms: Win | Units: 3

CS 359: Topics in the Theory of Computation

Advanced material is often taught for the first time as a topics course, perhaps by a faculty member visiting from another institution. May be repeated for credit.
Last offered: Spring 2005 | Repeatable for credit

CS 360: Simplicity and Complexity in Economic Theory (ECON 284)

Technology has enabled the emergence of economic systems of formerly inconceivable complexity. Nevertheless, some technology-related economic problems are so complex that either supercomputers cannot solve them in a reasonable time, or they are too complex for humans to comprehend. Thus, modern economic designs must still be simple enough for humans to understand, and must address computationally complex problems in an efficient fashion. This topics course explores simplicity and complexity in economics, primarily via theoretical models. We will focus on recent advances. Key topics include (but are not limited to) resource allocation in complex environments, communication complexity and information aggregation in markets, robust mechanisms, dynamic matching theory, influence maximization in networks, and the design of simple (user-friendly) mechanisms. Some applications include paired kidney exchange, auctions for electricity and for radio spectrum, ride-sharing platforms, and the diffusion of information. Prerequisites: Econ 203 or equivalent.
Terms: Spr | Units: 3-5

CS 361: Engineering Design Optimization (AA 222)

Design of engineering systems within a formal optimization framework. This course covers the mathematical and algorithmic fundamentals of optimization, including derivative and derivative-free approaches for both linear and non-linear problems, with an emphasis on multidisciplinary design optimization. Topics will also include quantitative methodologies for addressing various challenges, such as accommodating multiple objectives, automating differentiation, handling uncertainty in evaluations, selecting design points for experimentation, and principled methods for optimization when evaluations are expensive. Applications range from the design of aircraft to automated vehicles. Prerequisites: some familiarity with probability, programming, and multivariable calculus.
Terms: Spr | Units: 3-4
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints