2014-2015 2015-2016 2016-2017 2017-2018 2018-2019
Browse
by subject...
    Schedule
view...
 

21 - 30 of 259 results for: CS

CS 83: Playback Theater For Research

Playback combines elements of theater, community work and storytelling. In a playback show, a group of actors and musicians create an improvised performance based on the audience's personal stories. A playback show brings about a powerful listening and sharing experience. During the course, we will tell, listen, play together, and train in playback techniques. We will write diaries to process our experience in the context of education and research. The course is aimed to strengthen listening abilities, creativity and the collaborative spirit, all integral parts of doing great science. In playback, as in research, we are always moving together, from the known, to the unknown, and back. There is limited enrollment for this class. Application is required.
Terms: Win | Units: 3 | UG Reqs: WAY-CE | Grading: Letter or Credit/No Credit
Instructors: Reingold, O. (PI)

CS 93: Teaching AI

For graduate students who are TA-ing an AI course. This course prepares new AI section leaders to teach, write, and evaluate AI content. In class, you will be evaluating final projects individually and as a group. You will have discussions criticizing papers and assigning grades to them. You will analyze and solve discussion session problems on the board, explain algorithmsnlike backpropagation, and learn how to give constructive feedback to students. The class will also include a guest speaker who will give teaching advice and talk about AI. Focus is on teaching skills, techniques, and final projects grading. The class meets once a week for the first 6 weeks of the quarter.
Terms: Spr | Units: 1 | Grading: Satisfactory/No Credit

CS 100A: Problem-solving Lab for CS106A

Additional problem solving practice for the introductory CS course CS 106A. Sections are designed to allow students to acquire a deeper understanding of CS and its applications, work collaboratively, and develop a mastery of the material. Limited enrollment, permission of instructor required. Concurrent enrollment in CS 106A required.
Terms: Win, Spr | Units: 1 | Grading: Satisfactory/No Credit

CS 100B: Problem-solving Lab for CS106B

Additional problem solving practice for the introductory CS course CS106B. Sections are designed to allow students to acquire a deeper understanding of CS and its applications, work collaboratively, and develop a mastery of the material. Limited enrollment, permission of instructor required. Concurrent enrollment in CS 106B required.
Terms: Win, Spr | Units: 1 | Grading: Satisfactory/No Credit

CS 101: Introduction to Computing Principles

Introduces the essential ideas of computing: data representation, algorithms, programming "code", computer hardware, networking, security, and social issues. Students learn how computers work and what they can do through hands-on exercises. In particular, students will see the capabilities and weaknesses of computer systems so they are not mysterious or intimidating. Course features many small programming exercises, although no prior programming experience is assumed or required. CS101 is not a complete programming course such as CS106A. CS101 is effectively an alternative to CS105. A laptop computer is recommended for the in-class exercises.
Terms: Aut | Units: 3-5 | UG Reqs: GER:DB-EngrAppSci, WAY-FR | Grading: Letter or Credit/No Credit

CS 102: Big Data - Tools and Techniques

Aimed at non-CS undergraduate and graduate students who want to learn the basics of big data tools and techniques and apply that knowledge in their areas of study. Many of the world's biggest discoveries and decisions in science, technology, business, medicine, politics, and society as a whole, are now being made on the basis of collecting and analyzing large volumes of data. At the same time, it is surprisingly easy to make errors or come to false conclusions from data analysis alone. This course provides a broad and practical introduction to big data: data analysis techniques including databases, data mining, and machine learning; data analysis tools including spreadsheets, relational databases and SQL, Python, and R; data visualization techniques and tools; pitfalls in data collection and analysis. Tools and techniques are hands-on but at a cursory level, providing a basis for future exploration and application. Prerequisites: comfort with basic logic and mathematical concepts, along with high school AP computer science, CS106A, or other equivalent programming experience.
Terms: Win | Units: 3-4 | UG Reqs: WAY-AQR | Grading: Letter or Credit/No Credit

CS 103: Mathematical Foundations of Computing

What are the theoretical limits of computing power? What problems can be solved with computers? Which ones cannot? And how can we reason about the answers to these questions with mathematical certainty? This course explores the answers to these questions and serves as an introduction to discrete mathematics, computability theory, and complexity theory. At the completion of the course, students will feel comfortable writing mathematical proofs, reasoning about discrete structures, reading and writing statements in first-order logic, and working with mathematical models of computing devices. Throughout the course, students will gain exposure to some of the most exciting mathematical and philosophical ideas of the late nineteenth and twentieth centuries. Specific topics covered include formal mathematical proofwriting, propositional and first-order logic, set theory, binary relations, functions (injections, surjections, and bijections), cardinality, basic graph theory, the pigeonhole prin more »
What are the theoretical limits of computing power? What problems can be solved with computers? Which ones cannot? And how can we reason about the answers to these questions with mathematical certainty? This course explores the answers to these questions and serves as an introduction to discrete mathematics, computability theory, and complexity theory. At the completion of the course, students will feel comfortable writing mathematical proofs, reasoning about discrete structures, reading and writing statements in first-order logic, and working with mathematical models of computing devices. Throughout the course, students will gain exposure to some of the most exciting mathematical and philosophical ideas of the late nineteenth and twentieth centuries. Specific topics covered include formal mathematical proofwriting, propositional and first-order logic, set theory, binary relations, functions (injections, surjections, and bijections), cardinality, basic graph theory, the pigeonhole principle, mathematical induction, finite automata, regular expressions, the Myhill-Nerode theorem, context-free grammars, Turing machines, decidable and recognizable languages, self-reference and undecidability, verifiers, and the P versus NP question. Students with significant proofwriting experience are encouraged to instead take CS154. Students interested in extra practice and support with the course are encouraged to concurrently enroll in CS103A. Prerequisite: CS106B or equivalent. CS106B may be taken concurrently with CS103.
Terms: Aut, Win, Spr, Sum | Units: 3-5 | UG Reqs: GER:DB-Math, WAY-FR | Grading: Letter or Credit/No Credit

CS 103A: Mathematical Problem-solving Strategies

Problem solving strategies and techniques in discrete mathematics and computer science. Additional problem solving practice for CS103. In-class participation required. Prerequisite: consent of instructor. Co-requisite: CS103.
Terms: Aut, Win | Units: 1 | Grading: Satisfactory/No Credit

CS 105: Introduction to Computers

For non-technical majors. What computers are and how they work. Practical experience in programming. Construction of computer programs and basic design techniques. A survey of Internet technology and the basics of computer hardware. Students in technical fields and students looking to acquire programming skills should take 106A or 106X. Students with prior computer science experience at the level of 106 or above require consent of instructor. Prerequisite: minimal math skills.
Terms: Spr | Units: 3-5 | UG Reqs: GER:DB-EngrAppSci, WAY-FR | Grading: Letter or Credit/No Credit
Instructors: Young, P. (PI)

CS 106A: Programming Methodology (ENGR 70A)

Introduction to the engineering of computer applications emphasizing modern software engineering principles: object-oriented design, decomposition, encapsulation, abstraction, and testing. Emphasis is on good programming style and the built-in facilities of respective languages. No prior programming experience required. Summer quarter enrollment is limited. Alternative versions of CS106A may be available which cover most of the same material but in different programming languages.
Terms: Aut, Win, Spr, Sum | Units: 3-5 | UG Reqs: GER:DB-EngrAppSci, WAY-FR | Grading: Letter or Credit/No Credit
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints