2015-2016 2016-2017 2017-2018 2018-2019 2019-2020
Browse
by subject...
    Schedule
view...
 

51 - 60 of 98 results for: CS ; Currently searching autumn courses. You can expand your search to include all quarters

CS 208E: Great Ideas in Computer Science

Great Ideas in Computer Science Covers the intellectual tradition of computer science emphasizing ideas that reflect the most important milestones in the history of the discipline. Topics include programming and problem solving; implementing computation in hardware; algorithmic efficiency; the theoretical limits of computation; cryptography and security; computer networks; machine learning; and the philosophy behind artificial intelligence. Readings will include classic papers along with additional explanatory material.
Terms: Aut | Units: 3
Instructors: Gregg, C. (PI)

CS 221: Artificial Intelligence: Principles and Techniques

Artificial intelligence (AI) has had a huge impact in many areas, including medical diagnosis, speech recognition, robotics, web search, advertising, and scheduling. This course focuses on the foundational concepts that drive these applications. In short, AI is the mathematics of making good decisions given incomplete information (hence the need for probability) and limited computation (hence the need for algorithms). Specific topics include search, constraint satisfaction, game playing, Markov decision processes, graphical models, machine learning, and logic. Prerequisites: CS 103 or CS 103B/X, CS 106B or CS 106X, CS 107, and CS 109 (algorithms, probability, and programming experience).
Terms: Aut, Spr | Units: 3-4

CS 224W: Machine Learning with Graphs

Networks are a fundamental tool for modeling complex social, technological, and biological systems. Coupled with the emergence of online social networks and large-scale data availability in biological sciences, this course focuses on the analysis of massive networks which provide several computational, algorithmic, and modeling challenges. Students are introduced to machine learning techniques and data mining tools apt to reveal insights on the social, technological, and natural worlds, by means of studying their underlying network structure and interconnections. Topics include: robustness and fragility of food webs and financial markets; algorithms for the World Wide Web; graph neural networks and representation learning; identification of functional modules in biological networks; disease outbreak detection.
Terms: Aut | Units: 3-4
Instructors: Leskovec, J. (PI)

CS 229: Machine Learning (STATS 229)

Topics: statistical pattern recognition, linear and non-linear regression, non-parametric methods, exponential family, GLMs, support vector machines, kernel methods, deep learning, model/feature selection, learning theory, ML advice, clustering, density estimation, EM, dimensionality reduction, ICA, PCA, reinforcement learning and adaptive control, Markov decision processes, approximate dynamic programming, and policy search. Prerequisites: linear algebra, and basic probability and statistics.
Terms: Aut, Spr | Units: 3-4

CS 230: Deep Learning

Deep Learning is one of the most highly sought after skills in AI. We will help you become good at Deep Learning. In this course, you will learn the foundations of Deep Learning, understand how to build neural networks, and learn how to lead successful machine learning projects. You will learn about Convolutional networks, RNNs, LSTM, Adam, Dropout, BatchNorm, Xavier/He initialization, and more. You will work on case studies from healthcare, autonomous driving, sign language reading, music generation, and natural language processing. You will master not only the theory, but also see how it is applied in industry. You will practice all these ideas in Python and in TensorFlow, which we will teach. AI is transforming multiple industries. After this course, you will likely find creative ways to apply it to your work. This class is taught in the flipped-classroom format. You will watch videos and complete in-depth programming assignments and online quizzes at home, then come in to class for advanced discussions and work on projects. This class will culminate in an open-ended final project, which the teaching team will help you on. Prerequisites: Familiarity with programming in Python and Linear Algebra (matrix / vector multiplications). CS 229 may be taken concurrently.
Terms: Aut, Win, Spr | Units: 3-4

CS 236: Deep Generative Models

Generative models are widely used in many subfields of AI and Machine Learning. Recent advances in parameterizing these models using neural networks, combined with progress in stochastic optimization methods, have enabled scalable modeling of complex, high-dimensional data including images, text, and speech. In this course, we will study the probabilistic foundations and learning algorithms for deep generative models, including Variational Autoencoders (VAE), Generative Adversarial Networks (GAN), and flow models. The course will also discuss application areas that have benefitted from deep generative models, including computer vision, speech and natural language processing, and reinforcement learning. Prerequisites: Basic knowledge about machine learning from at least one of CS 221, 228, 229 or 230. Students will work with computational and mathematical models and should have a basic knowledge of probabilities and calculus. Proficiency in some programming language, preferably Python, required.
Terms: Aut | Units: 3

CS 237A: Principles of Robot Autonomy I (AA 174A, AA 274A, EE 260A)

Basic principles for endowing mobile autonomous robots with perception, planning, and decision-making capabilities. Algorithmic approaches for robot perception, localization, and simultaneous localization and mapping; control of non-linear systems, learning-based control, and robot motion planning; introduction to methodologies for reasoning under uncertainty, e.g., (partially observable) Markov decision processes. Extensive use of the Robot Operating System (ROS) for demonstrations and hands-on activities. Prerequisites: CS 106A or equivalent, CME 100 or equivalent (for linear algebra), and CME 106 or equivalent (for probability theory).
Terms: Aut | Units: 3-4
Instructors: Pavone, M. (PI)

CS 238: Decision Making under Uncertainty (AA 228)

This course is designed to increase awareness and appreciation for why uncertainty matters, particularly for aerospace applications. Introduces decision making under uncertainty from a computational perspective and provides an overview of the necessary tools for building autonomous and decision-support systems. Following an introduction to probabilistic models and decision theory, the course will cover computational methods for solving decision problems with stochastic dynamics, model uncertainty, and imperfect state information. Topics include: Bayesian networks, influence diagrams, dynamic programming, reinforcement learning, and partially observable Markov decision processes. Applications cover: air traffic control, aviation surveillance systems, autonomous vehicles, and robotic planetary exploration. Prerequisites: basic probability and fluency in a high-level programming language.
Terms: Aut | Units: 3-4

CS 242: Programming Languages

This course explores models of computation, both old, like functional programming with the lambda calculus (circa 1930), and new, like memory-safe systems programming with Rust (circa 2010). Topics include type systems (polymorphism, algebraic data types, static vs. dynamic), control flow (exceptions, continuations), concurrency/parallelism, metaprogramming, and the semantic gap between computational models and modern hardware. The study of programming languages is equal parts systems and theory, looking at how a rigorous understanding of the syntax, structure, and semantics of computation enables formal reasoning about the behavior and properties of complex real-world systems. In light of today's Cambrian explosion of new programming languages, this course also seeks to provide a conceptual clarity on how to compare and contrast the multitude of programming languages, models, and paradigms in the modern programming landscape. Prerequisites: 103, 110.
Terms: Aut | Units: 3-4
Instructors: Crichton, W. (PI)

CS 247I: Design for Understanding

Complex problems require sophisticated approaches. In this project-based hands-on course, students explore the design of systems, information and interface for human use. We will model the flow of interactions, data and context, and crafting a design that is useful, appropriate and robust. Students will create utility apps or games as a response to the challenges presented. We will also examine the ethical consequences of design decisions and explore current issues arising from unintended consequences. Prerequisite: CS 147 or equivalent.
Terms: Aut | Units: 3-4
Instructors: Wodtke, C. (PI)
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints