2015-2016 2016-2017 2017-2018 2018-2019 2019-2020
Browse
by subject...
    Schedule
view...
 
  Are you a Computer Science Student? Want to make Stanford's systems even better?
Do you want to help improve the Stanford systems that you and your friends use all the time? We are looking for students interested in hacking on ExploreCourses and other upcoming university systems. Click here to learn more!

31 - 40 of 98 results for: CS ; Currently searching autumn courses. You can expand your search to include all quarters

CS 147: Introduction to Human-Computer Interaction Design

Introduces fundamental methods and principles for designing, implementing, and evaluating user interfaces. Topics: user-centered design, rapid prototyping, experimentation, direct manipulation, cognitive principles, visual design, social software, software tools. Learn by doing: work with a team on a quarter-long design project, supported by lectures, readings, and studios. Prerequisite: 106B or X or equivalent programming experience. Recommended that CS Majors have also taken one of 142, 193P, or 193A.
Terms: Aut | Units: 3-5
Instructors: Landay, J. (PI)

CS 148: Introduction to Computer Graphics and Imaging

Introductory prerequisite course in the computer graphics sequence introducing students to the technical concepts behind creating synthetic computer generated images. Begins with OpenGL/scanline rendering including discussions of underlying mathematical concepts including triangles, normals, interpolation, texture/bump mapping, etc. Importantly, the course will discuss handling light/color for image formats, computer displays, printers, etc., as well as how light interacts with the environment, constructing engineering models such as the BRDF, and various simplifications into more basic lighting and shading models. Ray tracing is introduced and compared to real world cameras to illustrate various concepts, and both anti-aliasing and acceleration structures are discussed. The final class mini-project consists of building out a ray tracer to create visually compelling images. Starter codes and code bits will be provided to aid in development, but this class focuses on what you can do with the code as opposed to what the code itself looks like. Therefore grading is weighted toward in person "demos" of the code in action - creativity and the production of impressive visual imagery are highly encouraged/rewarded. Prerequisites: CS 107, MATH 51.
Terms: Aut | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci, WAY-CE
Instructors: Fedkiw, R. (PI)

CS 149: Parallel Computing

This course is an introduction to parallelism and parallel programming. Most new computer architectures are parallel; programming these machines requires knowledge of the basic issues of and techniques for writing parallel software. Topics: varieties of parallelism in current hardware (e.g., fast networks, multicore, accelerators such as GPUs, vector instruction sets), importance of locality, implicit vs. explicit parallelism, shared vs. non-shared memory, synchronization mechanisms (locking, atomicity, transactions, barriers), and parallel programming models (threads, data parallel/streaming, MapReduce, Apache Spark, SPMD, message passing, SIMT, transactions, and nested parallelism). Significant parallel programming assignments will be given as homework. The course is open to students who have completed the introductory CS course sequence through 110.
Terms: Aut | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci

CS 152: Trust and Safety Engineering

An introduction to the ways consumer internet services are abused to cause real human harm and the potential operational, product and engineering responses. Students will learn about spam, fraud, account takeovers, the use of social media by terrorists, misinformation, child exploitation, harassment, bullying and self-harm. This will include studying both the technical and sociological roots of these harms and the ways various online providers have responded. Our goal is to provide students with an understanding of how the technologies they may build have been abused in the past and how they might spot future abuses earlier. The class will be taught by a long-time practitioner and supplemented by guest lecturers from local companies. Content note: This class will cover real-world harmful behavior and expose students to potentially upsetting material. Submit an application for the class at: http://cs152app.stanford.edu
Terms: Aut, Win | Units: 3
Instructors: Stamos, A. (PI)

CS 154: Introduction to Automata and Complexity Theory

This course provides a mathematical introduction to the following questions: What is computation? Given a computational model, what problems can we hope to solve in principle with this model? Besides those solvable in principle, what problems can we hope to efficiently solve? In many cases we can give completely rigorous answers; in other cases, these questions have become major open problems in computer science and mathematics. By the end of this course, students will be able to classify computational problems in terms of their computational complexity (Is the problem regular? Not regular? Decidable? Recognizable? Neither? Solvable in P? NP-complete? PSPACE-complete?, etc.). Students will gain a deeper appreciation for some of the fundamental issues in computing that are independent of trends of technology, such as the Church-Turing Thesis and the P versus NP problem. Prerequisites: CS 103 or 103B.
Terms: Aut | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci
Instructors: Reingold, O. (PI)

CS 157: Computational Logic

Rigorous introduction to Symbolic Logic from a computational perspective. Encoding information in the form of logical sentences. Reasoning with information in this form. Overview of logic technology and its applications - in mathematics, science, engineering, business, law, and so forth. Topics include the syntax and semantics of Propositional Logic, Relational Logic, and Herbrand Logic, validity, contingency, unsatisfiability, logical equivalence, entailment, consistency, natural deduction (Fitch), mathematical induction, resolution, compactness, soundness, completeness.
Terms: Aut | Units: 3 | UG Reqs: GER:DB-EngrAppSci

CS 161: Design and Analysis of Algorithms

Worst and average case analysis. Recurrences and asymptotics. Efficient algorithms for sorting, searching, and selection. Data structures: binary search trees, heaps, hash tables. Algorithm design techniques: divide-and-conquer, dynamic programming, greedy algorithms, amortized analysis, randomization. Algorithms for fundamental graph problems: minimum-cost spanning tree, connected components, topological sort, and shortest paths. Possible additional topics: network flow, string searching. Prerequisite: 103 or 103B; 109 or STATS 116.
Terms: Aut, Win, Sum | Units: 3-5 | UG Reqs: GER:DB-EngrAppSci, WAY-FR

CS 183E: Effective Leadership in High-Tech

You will undoubtedly leave Stanford with the technical skills to excel in your first few jobs. But non-technical skills are just as critical to making a difference. This seminar is taught by two industry veterans in engineering leadership and product management. In a small group setting, we will explore how you can be a great individual contributor (communicating with clarity, getting traction for your ideas, resolving conflict, and delivering your best work) and how you can transition into leadership roles (finding leadership opportunities, creating a great team culture, hiring and onboarding new team members). We will end by turning back to your career (picking your first job and negotiating your offer, managing your career changes, building a great network, and succeeding with mentors). Prerequisites: Preference given to seniors and co-terms in Computer Science and related majors. Enrollment limited and application required for admittance.
Terms: Aut | Units: 1

CS 191: Senior Project

Restricted to Computer Science and Computer Systems Engineering students. Group or individual projects under faculty direction. Register using instructor's section number. A project can be either a significant software application or publishable research. Software application projects include substantial programming and modern user-interface technologies and are comparable in scale to shareware programs or commercial applications. Research projects may result in a paper publishable in an academic journal or presentable at a conference. Required public presentation of final application or research results. Prerequisite: Completion of at least 135 units.
Terms: Aut, Win, Spr, Sum | Units: 1-6 | Repeatable for credit
Instructors: Agrawala, M. (PI) ; Aiken, A. (PI) ; Akeley, K. (PI) ; Altman, R. (PI) ; Angst, R. (PI) ; Bailis, P. (PI) ; Baker, M. (PI) ; Barbagli, F. (PI) ; Batzoglou, S. (PI) ; Bejerano, G. (PI) ; Bernstein, M. (PI) ; Blikstein, P. (PI) ; Boneh, D. (PI) ; Borenstein, J. (PI) ; Boyd, S. (PI) ; Bradski, G. (PI) ; Brafman, R. (PI) ; Cain, J. (PI) ; Cao, P. (PI) ; Casado, M. (PI) ; Charikar, M. (PI) ; Cheriton, D. (PI) ; Cooper, S. (PI) ; Dally, B. (PI) ; De-Micheli, G. (PI) ; Dill, D. (PI) ; Dror, R. (PI) ; Dwork, C. (PI) ; Engler, D. (PI) ; Ermon, S. (PI) ; Fedkiw, R. (PI) ; Feigenbaum, E. (PI) ; Fikes, R. (PI) ; Fisher, K. (PI) ; Fogg, B. (PI) ; Fox, A. (PI) ; Garcia-Molina, H. (PI) ; Genesereth, M. (PI) ; Gill, J. (PI) ; Girod, B. (PI) ; Goel, A. (PI) ; Goel, S. (PI) ; Goodman, N. (PI) ; Gregg, C. (PI) ; Guibas, L. (PI) ; Hanrahan, P. (PI) ; Heer, J. (PI) ; Hennessy, J. (PI) ; Horowitz, M. (PI) ; James, D. (PI) ; Johari, R. (PI) ; Johnson, M. (PI) ; Jurafsky, D. (PI) ; Katti, S. (PI) ; Kay, M. (PI) ; Khatib, O. (PI) ; Klemmer, S. (PI) ; Kochenderfer, M. (PI) ; Koller, D. (PI) ; Koltun, V. (PI) ; Konolige, K. (PI) ; Kozyrakis, C. (PI) ; Kundaje, A. (PI) ; Lam, M. (PI) ; Landay, J. (PI) ; Latombe, J. (PI) ; Lee, C. (PI) ; Leskovec, J. (PI) ; Levis, P. (PI) ; Levitt, M. (PI) ; Levoy, M. (PI) ; Li, F. (PI) ; Liang, P. (PI) ; Ma, T. (PI) ; Manna, Z. (PI) ; Manning, C. (PI) ; Mazieres, D. (PI) ; McCarthy, J. (PI) ; McKeown, N. (PI) ; Mitchell, J. (PI) ; Mitra, S. (PI) ; Montanari, A. (PI) ; Motwani, R. (PI) ; Musen, M. (PI) ; Nass, C. (PI) ; Nayak, P. (PI) ; Ng, A. (PI) ; Niebles Duque, J. (PI) ; Nilsson, N. (PI) ; Olukotun, O. (PI) ; Ousterhout, J. (PI) ; Paepcke, A. (PI) ; Pande, V. (PI) ; Parlante, N. (PI) ; Pea, R. (PI) ; Piech, C. (PI) ; Plotkin, S. (PI) ; Plummer, R. (PI) ; Poldrack, R. (PI) ; Potts, C. (PI) ; Prabhakar, B. (PI) ; Pratt, V. (PI) ; Raghavan, P. (PI) ; Rajaraman, A. (PI) ; Re, C. (PI) ; Reingold, O. (PI) ; Roberts, E. (PI) ; Rosenblum, M. (PI) ; Roughgarden, T. (PI) ; Sahami, M. (PI) ; Salisbury, J. (PI) ; Savarese, S. (PI) ; Saxena, A. (PI) ; Schwarz, K. (PI) ; Shoham, Y. (PI) ; Sosic, R. (PI) ; Stepp, M. (PI) ; Thrun, S. (PI) ; Tobagi, F. (PI) ; Trevisan, L. (PI) ; Ullman, J. (PI) ; Valiant, G. (PI) ; Van Roy, B. (PI) ; Wang, G. (PI) ; Widom, J. (PI) ; Wiederhold, G. (PI) ; Williams, R. (PI) ; Williams, V. (PI) ; Winograd, T. (PI) ; Winstein, K. (PI) ; Wootters, M. (PI) ; Yamins, D. (PI) ; Young, P. (PI) ; Zaharia, M. (PI) ; Zelenski, J. (PI) ; Zou, J. (PI)

CS 191W: Writing Intensive Senior Project (WIM)

Restricted to Computer Science and Computer Systems Engineering students. Writing-intensive version of CS191. Register using the section number of an Academic Council member. Prerequisite: Completion of at least 135 units.
Terms: Aut, Win, Spr | Units: 3-6 | Repeatable for credit
Instructors: Agrawala, M. (PI) ; Aiken, A. (PI) ; Akeley, K. (PI) ; Altman, R. (PI) ; Baker, M. (PI) ; Barbagli, F. (PI) ; Batzoglou, S. (PI) ; Bejerano, G. (PI) ; Bernstein, M. (PI) ; Blikstein, P. (PI) ; Boneh, D. (PI) ; Borenstein, J. (PI) ; Boyd, S. (PI) ; Bradski, G. (PI) ; Brafman, R. (PI) ; Brunskill, E. (PI) ; Cain, J. (PI) ; Cao, P. (PI) ; Casado, M. (PI) ; Charikar, M. (PI) ; Cheriton, D. (PI) ; Cooper, S. (PI) ; Dally, B. (PI) ; De-Micheli, G. (PI) ; Dill, D. (PI) ; Dror, R. (PI) ; Durumeric, Z. (PI) ; Dwork, C. (PI) ; Engler, D. (PI) ; Ermon, S. (PI) ; Fatahalian, K. (PI) ; Fedkiw, R. (PI) ; Feigenbaum, E. (PI) ; Fikes, R. (PI) ; Fisher, K. (PI) ; Fogg, B. (PI) ; Fox, A. (PI) ; Garcia-Molina, H. (PI) ; Genesereth, M. (PI) ; Gill, J. (PI) ; Girod, B. (PI) ; Goel, A. (PI) ; Goel, S. (PI) ; Goodman, N. (PI) ; Gregg, C. (PI) ; Guibas, L. (PI) ; Hanrahan, P. (PI) ; Heer, J. (PI) ; Hennessy, J. (PI) ; Horowitz, M. (PI) ; James, D. (PI) ; Johari, R. (PI) ; Johnson, M. (PI) ; Jurafsky, D. (PI) ; Katti, S. (PI) ; Kay, M. (PI) ; Khatib, O. (PI) ; Klemmer, S. (PI) ; Kochenderfer, M. (PI) ; Koller, D. (PI) ; Koltun, V. (PI) ; Konolige, K. (PI) ; Kozyrakis, C. (PI) ; Kundaje, A. (PI) ; Lam, M. (PI) ; Landay, J. (PI) ; Latombe, J. (PI) ; Leskovec, J. (PI) ; Levis, P. (PI) ; Levitt, M. (PI) ; Levoy, M. (PI) ; Li, F. (PI) ; Liang, P. (PI) ; Mackey, L. (PI) ; Manna, Z. (PI) ; Manning, C. (PI) ; Mazieres, D. (PI) ; McCarthy, J. (PI) ; McKeown, N. (PI) ; Mitchell, J. (PI) ; Mitra, S. (PI) ; Montanari, A. (PI) ; Motwani, R. (PI) ; Musen, M. (PI) ; Nass, C. (PI) ; Nayak, P. (PI) ; Ng, A. (PI) ; Nilsson, N. (PI) ; Olukotun, O. (PI) ; Ousterhout, J. (PI) ; Paepcke, A. (PI) ; Pande, V. (PI) ; Parlante, N. (PI) ; Pea, R. (PI) ; Piech, C. (PI) ; Plotkin, S. (PI) ; Plummer, R. (PI) ; Potts, C. (PI) ; Prabhakar, B. (PI) ; Pratt, V. (PI) ; Raghavan, P. (PI) ; Rajaraman, A. (PI) ; Re, C. (PI) ; Reingold, O. (PI) ; Roberts, E. (PI) ; Rosenblum, M. (PI) ; Roughgarden, T. (PI) ; Saberi, A. (PI) ; Sahami, M. (PI) ; Salisbury, J. (PI) ; Savarese, S. (PI) ; Saxena, A. (PI) ; Schwarz, K. (PI) ; Shoham, Y. (PI) ; Stepp, M. (PI) ; Thrun, S. (PI) ; Tobagi, F. (PI) ; Trevisan, L. (PI) ; Ullman, J. (PI) ; Valiant, G. (PI) ; Van Roy, B. (PI) ; Wang, G. (PI) ; Wetzstein, G. (PI) ; Widom, J. (PI) ; Wiederhold, G. (PI) ; Williams, R. (PI) ; Williams, V. (PI) ; Winograd, T. (PI) ; Winstein, K. (PI) ; Wodtke, C. (PI) ; Young, P. (PI) ; Zaharia, M. (PI) ; Zelenski, J. (PI) ; Zou, J. (PI)
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints