2014-2015 2015-2016 2016-2017 2017-2018 2018-2019
Browse
by subject...
    Schedule
view...
 

41 - 50 of 93 results for: CS

CS 209: Law, Bias, & Algorithms (CSRE 230, MS&E 330, SOC 279)

Human decision making is increasingly being displaced by predictive algorithms. Judges sentence defendants based on statistical risk scores; regulators take enforcement actions based on predicted violations; advertisers target materials based on demographic attributes; and employers evaluate applicants and employees based on machine-learned models. A predominant concern with the rise of such algorithmic decision making is that it may replicate or exacerbate human bias. Algorithms might discriminate, for instance, based on race or gender. This course surveys the legal and ethical principles for assessing the equity of algorithms, describes techniques for designing fair systems, and considers how antidiscrimination law and the design of algorithms may need to evolve to account for machine bias. Concepts will be developed in part through guided in-class coding exercises. Admission is by consent of instructor and is limited to 20 students. Grading is based on response papers, class participation, and a final project. Prerequisite: CS 106A or equivalent knowledge of coding.
Terms: Spr | Units: 3 | Grading: Letter (ABCD/NP)
Instructors: Goel, S. (PI)

CS 210B: Software Project Experience with Corporate Partners

Continuation of CS210A. Focus is on real-world software development. Corporate partners seed projects with loosely defined challenges from their R&D labs; students innovate to build their own compelling software solutions. Student teams are treated as start-up companies with a budget and a technical advisory board comprised of the instructional staff and corporate liaisons. Teams will typically travel to the corporate headquarters of their collaborating partner, meaning some teams will travel internationally. Open loft classroom format such as found in Silicon Valley software companies. Exposure to: current practices in software engineering; techniques for stimulating innovation; significant development experience with creative freedoms; working in groups; real world software engineering challenges; public presentation of technical work; creating written descriptions of technical work. Prerequisites: CS 210A
Terms: Spr | Units: 3-4 | Grading: Letter (ABCD/NP)

CS 221: Artificial Intelligence: Principles and Techniques

Artificial intelligence (AI) has had a huge impact in many areas, including medical diagnosis, speech recognition, robotics, web search, advertising, and scheduling. This course focuses on the foundational concepts that drive these applications. In short, AI is the mathematics of making good decisions given incomplete information (hence the need for probability) and limited computation (hence the need for algorithms). Specific topics include search, constraint satisfaction, game playing, Markov decision processes, graphical models, machine learning, and logic. Prerequisites: CS 103 or CS 103B/X, CS 106B or CS 106X, CS 107, and CS 109 (algorithms, probability, and programming experience).
Terms: Aut, Spr, Sum | Units: 3-4 | Grading: Letter or Credit/No Credit

CS 224U: Natural Language Understanding (LINGUIST 188, LINGUIST 288)

Project-oriented class focused on developing systems and algorithms for robust machine understanding of human language. Draws on theoretical concepts from linguistics, natural language processing, and machine learning. Topics include lexical semantics, distributed representations of meaning, relation extraction, semantic parsing, sentiment analysis, and dialogue agents, with special lectures on developing projects, presenting research results, and making connections with industry. Prerequisites: one of LINGUIST 180, CS 124, CS 224N, CS224S, or CS221; and logical/semantics such as LINGUIST 130A or B, CS 157, or PHIL150
Terms: Spr | Units: 3-4 | Grading: Letter or Credit/No Credit

CS 225A: Experimental Robotics

Hands-on laboratory course experience in robotic manipulation. Topics include robot kinematics, dynamics, control, compliance, sensor-based collision avoidance, and human-robot interfaces. Second half of class is devoted to final projects using various robotic platforms to build and demonstrate new robot task capabilities. Previous projects include the development of autonomous robot behaviors of drawing, painting, playing air hocket, yoyo, basketball, ping-pong or xylophone. Prerequisites: 223A or equivalent.
Terms: Spr | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: Khatib, O. (PI)

CS 227B: General Game Playing

A general game playing system accepts a formal description of a game to play it without human intervention or algorithms designed for specific games. Hands-on introduction to these systems and artificial intelligence techniques such as knowledge representation, reasoning, learning, and rational behavior. Students create GGP systems to compete with each other and in external competitions. Prerequisite: programming experience. Recommended: 103 or equivalent.
Terms: Spr | Units: 3 | Grading: Letter or Credit/No Credit

CS 229: Machine Learning (STATS 229)

Topics: statistical pattern recognition, linear and non-linear regression, non-parametric methods, exponential family, GLMs, support vector machines, kernel methods, model/feature selection, learning theory, VC dimension, clustering, density estimation, EM, dimensionality reduction, ICA, PCA, reinforcement learning and adaptive control, Markov decision processes, approximate dynamic programming, and policy search. Prerequisites: linear algebra, and basic probability and statistics.
Terms: Aut, Spr, Sum | Units: 3-4 | Grading: Letter or Credit/No Credit

CS 229A: Applied Machine Learning

You will learn to implement and apply machine learning algorithms. This course emphasizes practical skills, and focuses on giving you skills to make these algorithms work. You will learn about commonly used learning techniques including supervised learning algorithms (logistic regression, linear regression, SVM, neural networks/deep learning), unsupervised learning algorithms (k-means), as well as learn about specific applications such as anomaly detection and building recommender systems. This class is taught in the flipped-classroom format. You will watch videos and complete in-depth programming assignments and online quizzes at home, then come to class for discussion sections. This class will culminate in an open-ended final project, which the teaching team will help you on. Prerequisites: Programming at the level of CS106B or 106X, and basic linear algebra such as Math 51.
Terms: Aut, Win, Spr | Units: 3-4 | Grading: Letter or Credit/No Credit

CS 230: Deep Learning

Deep Learning is one of the most highly sought after skills in AI. We will help you become good at Deep Learning. In this course, you will learn the foundations of Deep Learning, understand how to build neural networks, and learn how to lead successful machine learning projects. You will learn about Convolutional networks, RNNs, LSTM, Adam, Dropout, BatchNorm, Xavier/He initialization, and more. You will work on case studies from healthcare, autonomous driving, sign language reading, music generation, and natural language processing. You will master not only the theory, but also see how it is applied in industry. You will practice all these ideas in Python and in TensorFlow, which we will teach. AI is transforming multiple industries. After this course, you will likely find creative ways to apply it to your work. This class is taught in the flipped-classroom format. You will watch videos and complete in-depth programming assignments and online quizzes at home, then come in to class for advanced discussions and work on projects. This class will culminate in an open-ended final project, which the teaching team will help you on. Prerequisites: Familiarity with programming in Python and Linear Algebra (matrix / vector multiplications). CS 229 may be taken concurrently.
Terms: Aut, Win, Spr | Units: 3-4 | Grading: Letter or Credit/No Credit

CS 231N: Convolutional Neural Networks for Visual Recognition

Computer Vision has become ubiquitous in our society, with applications innsearch, image understanding, apps, mapping, medicine, drones, andnself-driving cars. Core to many of these applications are the tasks of image classification, localization and detection. This course is a deep dive into details of neural network architectures with a focus on learning end-to-end models for these tasks, particularly image classification. During the 10-week course, students will learn to implement, train and debug their own neural networks and gain a detailed understanding of cutting-edge research in computer vision. The final assignment will involve training a multi-million parameter convolutional neural network and applying it on the largest image classification dataset (ImageNet). We will focus on teaching how to set up the problem of image recognition, the learning algorithms (e.g. backpropagation), practical engineering tricks for training and fine-tuning the networks and guide the students thr more »
Computer Vision has become ubiquitous in our society, with applications innsearch, image understanding, apps, mapping, medicine, drones, andnself-driving cars. Core to many of these applications are the tasks of image classification, localization and detection. This course is a deep dive into details of neural network architectures with a focus on learning end-to-end models for these tasks, particularly image classification. During the 10-week course, students will learn to implement, train and debug their own neural networks and gain a detailed understanding of cutting-edge research in computer vision. The final assignment will involve training a multi-million parameter convolutional neural network and applying it on the largest image classification dataset (ImageNet). We will focus on teaching how to set up the problem of image recognition, the learning algorithms (e.g. backpropagation), practical engineering tricks for training and fine-tuning the networks and guide the students through hands-on assignments and a final course project. Much of the background and materials of this course will be drawn from the ImageNet Challenge: http://image-net.org/challenges/LSVRC/2014/index. Prerequisites: Proficiency in Python; familiarity with C/C++; CS 131 and CS 229 or equivalents; Math 21 or equivalent, linear algebra.
Terms: Spr | Units: 3-4 | Grading: Letter or Credit/No Credit
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints