2015-2016 2016-2017 2017-2018 2018-2019 2019-2020
Browse
by subject...
    Schedule
view...
 

51 - 60 of 83 results for: CHEM

CHEM 253: Fundamentals of Inorganic Chemistry

(Formerly Chem 251) Intended for first-year graduate students and advanced undergraduate students, as a review of how basic concepts in inorganic chemistry can be applied to materials of all dimensionalities. Specific topics will include: symmetry (group theory), bonding models (crystal field theory, valence bond theory, molecular orbital theory, and the Bloch theorem) and electronic structure, and properties/reactivity of molecules and extended solids. Prerequisite: introductory undergraduate-level inorganic course (equivalent to CHEM 151).
Terms: Spr | Units: 3

CHEM 255: Advanced Inorganic Chemistry (CHEM 155)

Chemical reactions of organotransition metal complexes and their role in homogeneous catalysis. Analogous patterns among reactions of transition metal complexes in lower oxidation states. Physical methods of structure determination. Prerequisite: one year of physical chemistry.
Last offered: Spring 2019

CHEM 256: Single-Crystal X-ray Diffraction (CHEM 156)

(Formerly 150) Practical X-ray crystallography for small molecule compounds, which will emphasize crystal growth, measurement strategies, structure solution and refinement, and report generation. Example structures will include absolute configuration of organic compounds (with the heaviest atom being oxygen), metal containing complexes, disordered small molecules and twinning. Students will learn how to get from a new compound to a single crystal, and then to a cif-file ready for publication submission. They will gain knowledge of the underlying theory and concepts for each step of structure determination.

CHEM 257: Bio-Inorganic Chemistry (BIOPHYS 297)

(Formerly Chem 297) Overview of metal sites in biology. Metalloproteins as elaborated inorganic complexes, their basic coordination chemistry and bonding, unique features of the protein ligand, and the physical methods used to study active sites. Active site structures are correlated with function (election transfer; dioxygen binding, activation and reduction to water). Prerequisites: Chem 153 and Chem 173, or equivalents.

CHEM 258B: Research Progress in Inorganic Chemistry

Required of all second-, third-, and fourth-year Ph.D. candidates in inorganic chemistry. Students present their research progress in written and oral forms (A); present a seminar in the literature of the field of research (B); and formulate, write, and orally defend a research proposal (C). Second-year students register for A; third-year students register for B; fourth-year students register for C.
Terms: Spr | Units: 1
Instructors: Solomon, E. (PI)

CHEM 258C: Research Progress in Inorganic Chemistry

Required of all second-, third-, and fourth-year Ph.D. candidates in inorganic chemistry. Students present their research progress in written and oral forms (A); present a seminar in the literature of the field of research (B); and formulate, write, and orally defend a research proposal (C). Second-year students register for A; third-year students register for B; fourth-year students register for C.
Terms: Aut, Win | Units: 1
Instructors: Solomon, E. (PI)

CHEM 261: Computational Chemistry

Introduction to computational chemistry methods and tools that can be used to interpret and guide experimental research. Project based and hands-on experience with electronic structure calculations, obtaining minimum energy structures and reaction pathways, molecular simulation and modeling. Prerequisite: knowledge of undergraduate level quantum mechanics at the level of Chem 173.
Terms: Aut | Units: 3
Instructors: Markland, T. (PI)

CHEM 271: Advanced Physical Chemistry

The principles of quantum mechanics. General formulation, mathematical methods, and applications of quantum theory. Different representations of quantum theory, i. e., the Dirac, Schrödinger, matrix, and density matrix methods. Time independent exactly solvable problems and approximate methods including time independent perturbation theory and the variational method. Atomic energy calculations, angular momentum, and introduction to molecular structure methods. Time dependent methods. Time dependent perturbation theory applied to various problems such as absorption and emission of radiation. Time dependent density matrix formalism applied to coherent coupling of radiation fields to molecular systems, e.g., NMR and optical spectroscopy. Prerequisite: Chem 175 or equivalent course.
Terms: Aut | Units: 3
Instructors: Fayer, M. (PI)

CHEM 273: Advanced Physical Chemistry

Statistical mechanics is a fundamental bridge that links microscopic world of quantum mechanics to macroscopic thermodynamic properties. We discuss the principles and methods of statistical mechanics from the ensemble point of view. Applications include statistical thermodynamics, quantum systems, heat capacities of gases and solids, chemical equilibrium, pair correlation functions in liquids, and phase transitions. Prerequisite: CHEM 271.
Terms: Win | Units: 3
Instructors: Cui, B. (PI)

CHEM 274: Electrochemical Measurements Lab (CHEM 174)

Introduction to modern electrochemical measurement in a hands-on, laboratory setting. Students assemble and use electrochemical cells including indicator, reference, working and counter electrodes, with macro, micro and ultramicro geometries, salt bridges, ion-selective membranes, electrometers, potentiostats, galvanostats, and stationary and rotated disk electrodes. The later portion of the course will involve a student-generated project to experimentally characterize some electrochemical system. Prerequisites: CHEM 134 and CHEM 171, MATH 51, PHYSICS 44 or equivalent with corequisite CHEM 100.
Terms: Aut | Units: 3
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints