2015-2016 2016-2017 2017-2018 2018-2019 2019-2020
Browse
by subject...
    Schedule
view...
 

11 - 15 of 15 results for: BIOS ; Currently searching autumn courses. You can expand your search to include all quarters

BIOS 286: Single Cell Immunogenomics

Preference is for graduate students and undergraduates with background in biology and genetics. The emphasis of the course will be on learning the essential principles of single cell genomics as applied to research questions in immunology. The topics will include understanding the fundamental principles of the technology, experimental methods, types of single cell sequencing assays available and data analysis. The emphasis will be on how these methods are used to delineate immunologic cell types, their interactions with other cells in the local microenvironment and determining differential gene expression patterns and signatures. Specialized topics will include the analysis of single cell T-cell and B-cell receptor characteristics as well as joining antibody staining information at single cell resolution. Guest speakers will include thought leaders in the field who are demonstrating how single cell immunogenomics are being applied to immunotherapy development. Enrollment is limited.
Terms: Aut | Units: 1

BIOS 287: Proteostatis: guarding the proteome in health and disease

The control of cellular protein homeostasis, also called Proteostasis, is emerging as the central cellular process controlling the stability, function and quality control of the proteome and central to our understanding of a vast range of diseases. The proteostasis machinery maintains the function of destabilized and mutant proteins; assists the degradation of damaged and aggregated proteins and monitors the health of the proteome, adjusting it in response to environmental or metabolic stresses. This class will introduce students to the exciting cutting edge discoveries in this field, and will relate them to medical and biotechnology applications, as well as how a better understanding of proteostasis can be leveraged to understand fundamental biological processes, such as evolution and aging and to ameliorate a wide range of diseases. Given the increasingly close links between aging, protein misfolding, and neurodegenerative disease, understanding proteostasis networksis of critical fundamental and practical importance. These insights are particularly relevant in view of the increased prevalence of late-onset neurodegenerative aggregation diseases caused by an increasingly elderly population.
Terms: Aut | Units: 3

BIOS 290: Preparation & Practice: Law

Through tailored lecture, case study and a practical final project, Biosciences and interdisciplinary sciences students and trainees will learn how to apply the skills they acquired in their academic training to a career in Patent Prosecution and related fields. Taught by field and faculty experts, this is your opportunity to network with IP law representatives and to gain hands-on experience in a new career of choice option. Topics include: applying for positions, the importance of IP protection, licensing, overview of the patent process, drafting applications and litigation.
Terms: Aut | Units: 1

BIOS 294: Chemistry for Biologists and Others

Chemical transformations are central to biology and function, and chemical methods provide some of the most powerful tools for everyday experimental biology. Yet, most practitioners of biology have learned chemistry through memorization and do not use chemical principles or intuition in their research, even though chemistry underlies most processes and experiments carried out in biology and by biologists. Fortunately, a basic understanding and working knowledge can be gained in a short time, through a small set of simple concepts and limited number of memorized ¿facts¿. These concepts and facts will be introduced and then mastered through use in highly interactive, in-class problems and evaluation of selected literature. At the end of the three-week course students will have an ability to understand the chemistry underlying cellular processes and to better discuss and evaluate chemical tools and approaches. Prerequisites: High school or college introductory chemistry recommended but not required.
Terms: Aut | Units: 3

BIOS 301: Graduate Environment of Support

Psychosocial, financial, and career issues in adapting graduate students to Stanford; how these issues relate to diversity, resources, policies, and procedures. Discussions among faculty, advanced graduate students, campus resource people, and the dean's office. (Thomas)
Terms: Aut | Units: 1
Instructors: Thomas, A. (PI)
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints