2015-2016 2016-2017 2017-2018 2018-2019 2019-2020
by subject...

11 - 20 of 36 results for: BIOMEDIN ; Currently searching offered courses. You can also include unoffered courses

BIOMEDIN 217: Translational Bioinformatics (BIOE 217, CS 275, GENE 217)

Computational methods for the translation of biomedical data into diagnostic, prognostic, and therapeutic applications in medicine. Topics: multi-scale omics data generation and analysis, utility and limitations of public biomedical resources, machine learning and data mining, issues and opportunities in drug discovery, and mobile/digital health solutions. Case studies and course project. Prerequisites: programming ability at the level of CS 106A and familiarity with biology and statistics.
Terms: Aut | Units: 4

BIOMEDIN 219: Mathematical Models and Medical Decisions

Analytic methods for determining optimal diagnostic and therapeutic decisions with applications to the care of individual patients and the design of policies applied to patient populations. Topics include: utility theory and probability modeling, empirical methods for disease prevalence estimation, probability models for periodic processes, binary decision-making techniques, Markov models of dynamic disease state problems, utility assessment techniques, parametric utility models, utility models for multidimensional outcomes, analysis of time-varying clinical outcomes, and the design of cost-constrained clinical policies. Extensive problem sets compliment the lectures. Prerequisites: introduction to calculus and basic statistics.
Terms: Win | Units: 3

BIOMEDIN 220: Artificial Intelligence in Healthcare (BIODS 220, CS 271)

Healthcare is one of the most exciting application domains of artificial intelligence, with transformative potential in areas ranging from medical image analysis to electronic health records-based prediction and precision medicine. This course will involve a deep dive into recent advances in AI in healthcare, focusing in particular on deep learning approaches for healthcare problems. We will start from foundations of neural networks, and then study cutting-edge deep learning models in the context of a variety of healthcare data including image, text, multimodal and time-series data. In the latter part of the course, we will cover advanced topics on open challenges of integrating AI in a societal application such as healthcare, including interpretability, robustness, privacy and fairness. The course aims to provide students from diverse backgrounds with both conceptual understanding and practical grounding of cutting-edge research on AI in healthcare.
Terms: Win | Units: 3-4
Instructors: Yeung, S. (PI)

BIOMEDIN 221: Machine Learning Approaches for Data Fusion in Biomedicine

Vast amounts of biomedical data are now routinely available for patients, raging from genomic data, to radiographic images and electronic health records. AI and machine learning are increasingly used to enable pattern discover to link such data for improvements in patient diagnosis, prognosis and tailoring treatment response. Yet, few studies focus on how to link different types of biomedical data in synergistic ways, and to develop data fusion approaches for improved biomedical decision support. This course will describe approaches for multi-omics, multi-modal and multi-scale data fusion of biomedical data in the context of biomedical decision support. Prerequisites: CS106A or equivalent, Stats 60 or equivalent.
Terms: Aut | Units: 2

BIOMEDIN 222: Cloud Computing for Biology and Healthcare (CS 273C, GENE 222)

Big Data is radically transforming healthcare. To provide real-time personalized healthcare, we need hardware and software solutions that can efficiently store and process large-scale biomedical datasets. In this class, students will learn the concepts of cloud computing and parallel systems' architecture. This class prepares students to understand how to design parallel programs for computationally intensive medical applications and how to run these applications on computing frameworks such as Cloud Computing and High Performance Computing (HPC) systems. Prerequisites: familiarity with programming in Python and R.
Terms: Spr | Units: 3

BIOMEDIN 224: Principles of Pharmacogenomics (GENE 224)

This course is an introduction to pharmacogenomics, including the relevant pharmacology, genomics, experimental methods (sequencing, expression, genotyping), data analysis methods and bioinformatics. The course reviews key gene classes (e.g., cytochromes, transporters) and key drugs (e.g., warfarin, clopidogrel, statins, cancer drugs) in the field. Resources for pharmacogenomics (e.g., PharmGKB, Drugbank, NCBI resources) are reviewed, as well as issues implementing pharmacogenomics testing in the clinical setting. Reading of key papers, including student presentations of this work; problem sets; final project selected with approval of instructor. Prerequisites: two of BIO 41, 42, 43, 44X, 44Y or consent of instructor.
Terms: Aut, Win, Spr, Sum | Units: 3

BIOMEDIN 225: Data Driven Medicine: Lectures

Lectures for BIOMEDIN 215.With the spread of electronic health records and increasingly low cost assays for patient molecular data, powerful data repositories with tremendous potential for biomedical research, clinical care and personalized medicine are being built. But these databases are large and difficult for any one specialist to analyze. To find the hidden associations within the full set of data, we introduce methods for data-mining at the internet scale, the handling of large-scale electronic medical records data for machine learning, methods in natural language processing and text-mining applied to medical records, methods for using ontologies for the annotation and indexing of unstructured content as well as semantic web technologies. Prerequisites: familiarity with statistics ( STATS 216) and biology.
Terms: Aut | Units: 2

BIOMEDIN 226: Digital Health Practicum in a Health Care Delivery System

Practical experience implementing clinical informatics solutions with a focus on digital health in one of the largest healthcare delivery systems in the United States. Individual meetings with senior clinical informatics leaders to discuss elements of successful projects. Implementation opportunities include supporting the use of electronic health records, engagement of patients and providers via a personal health record, use of informatics to support patient service centers, and improvement of patient access to clinical data. Consent of course instructors required at least one quarter prior to student enrollment in course.
Terms: Aut, Win, Spr, Sum | Units: 2-3

BIOMEDIN 233: Intermediate Biostatistics: Analysis of Discrete Data (HRP 261, STATS 261)

Methods for analyzing data from case-control and cross-sectional studies: the 2x2 table, chi-square test, Fisher's exact test, odds ratios, Mantel-Haenzel methods, stratification, tests for matched data, logistic regression, conditional logistic regression. Emphasis is on data analysis in SAS or R. Special topics: cross-fold validation and bootstrap inference.
Terms: Win | Units: 3
Instructors: Sainani, K. (PI)

BIOMEDIN 245: Statistical and Machine Learning Methods for Genomics (BIO 268, CS 373, GENE 245, STATS 345)

Introduction to statistical and computational methods for genomics. Sample topics include: expectation maximization, hidden Markov model, Markov chain Monte Carlo, ensemble learning, probabilistic graphical models, kernel methods and other modern machine learning paradigms. Rationales and techniques illustrated with existing implementations used in population genetics, disease association, and functional regulatory genomics studies. Instruction includes lectures and discussion of readings from primary literature. Homework and projects require implementing some of the algorithms and using existing toolkits for analysis of genomic datasets.
Terms: Win | Units: 3
Instructors: Kundaje, A. (PI)
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
updating results...
UG Requirements (GERs)
updating results...
updating results...
updating results...
© Stanford University | Terms of Use | Copyright Complaints