2015-2016 2016-2017 2017-2018 2018-2019 2019-2020
Browse
by subject...
    Schedule
view...
 

1 - 10 of 21 results for: BIOMEDIN

BIOMEDIN 201: Biomedical Informatics Student Seminar

Participants report on recent articles from the Biomedical Informatics literature or their research projects. Goals are to teach critical reading of scientific papers and presentation skills. May be repeated three times for credit.
Terms: Aut, Win, Spr, Sum | Units: 1 | Repeatable for credit

BIOMEDIN 205: Precision Practice with Big Data

Primarily for M.D. students; open to other graduate students. Provides an overview of how to leverage large amounts of clinical, molecular, and imaging data within hospitals and in cyberspace--big data--to practice medicine more effectively. Lectures by physicians, researchers, and industry leaders survey how the major methods of informatics can help physicians leverage big data to profile disease, to personalize treatment to patients, to predict treatment response, to discover new knowledge, and to challenge established medical dogma and the current paradigm of clinical decision-making based solely on published knowledge and individual physician experience. May be repeated for credit. Prerequisite: background in biomedicine. Background in computer science can be helpful but not required.
Terms: Aut | Units: 1

BIOMEDIN 214: Representations and Algorithms for Computational Molecular Biology (BIOE 214, CS 274, GENE 214)

Topics: introduction to bioinformatics and computational biology, algorithms for alignment of biological sequences and structures, computing with strings, phylogenetic tree construction, hidden Markov models, basic structural computations on proteins, protein structure prediction, protein threading techniques, homology modeling, molecular dynamics and energy minimization, statistical analysis of 3D biological data, integration of data sources, knowledge representation and controlled terminologies for molecular biology, microarray analysis, machine learning (clustering and classification), and natural language text processing. Prerequisite: CS 106B; recommended: CS161; consent of instructor for 3 units.
Terms: Aut | Units: 3-4

BIOMEDIN 215: Data Driven Medicine

The widespread adoption of electronic health records (EHRs) has created a new source of ¿big data¿¿namely, the record of routine clinical practice¿as a by-product of care. This graduate class will teach you how to use EHRs and other patient data to discover new clinical knowledge and improve healthcare. Upon completing this course, you should be able to: differentiate between and give examples of categories of research questions and the study designs used to address them, describe common healthcare data sources and their relative advantages and limitations, extract and transform various kinds of clinical data to create analysis-ready datasets, design and execute an analysis of a clinical dataset based on your familiarity with the workings, applicability, and limitations of common statistical methods, evaluate and criticize published research using your knowledge of 1-4 to generate new research ideas and separate hype from reality. Prerequisites: CS 106A or equivalent, STATS 60 or equivalent. Recommended: STATS 216, CS 145, STATS 305
Terms: Aut | Units: 3

BIOMEDIN 216: Representations and Algorithms for Molecular Biology: Lectures

Lecture component of BIOMEDIN 214. One unit for medical and graduate students who attend lectures only; may be taken for 2 units with participation in limited assignments and final project. Lectures also available via internet. Prerequisite: familiarity with biology recommended.
Terms: Aut | Units: 1-2
Instructors: Altman, R. (PI)

BIOMEDIN 217: Translational Bioinformatics (BIOE 217, CS 275, GENE 217)

Computational methods for the translation of biomedical data into diagnostic, prognostic, and therapeutic applications in medicine. Topics: multi-scale omics data generation and analysis, utility and limitations of public biomedical resources, machine learning and data mining, issues and opportunities in drug discovery, and mobile/digital health solutions. Case studies and course project. Prerequisites: programming ability at the level of CS 106A and familiarity with biology and statistics.
Terms: Aut | Units: 4

BIOMEDIN 221: Machine Learning Approaches for Data Fusion in Biomedicine

Vast amounts of biomedical data are now routinely available for patients, raging from genomic data, to radiographic images and electronic health records. AI and machine learning are increasingly used to enable pattern discover to link such data for improvements in patient diagnosis, prognosis and tailoring treatment response. Yet, few studies focus on how to link different types of biomedical data in synergistic ways, and to develop data fusion approaches for improved biomedical decision support. This course will describe approaches for multi-omics, multi-modal and multi-scale data fusion of biomedical data in the context of biomedical decision support. Prerequisites: CS106A or equivalent, Stats 60 or equivalent.
Terms: Aut | Units: 2

BIOMEDIN 224: Principles of Pharmacogenomics (GENE 224)

This course is an introduction to pharmacogenomics, including the relevant pharmacology, genomics, experimental methods (sequencing, expression, genotyping), data analysis methods and bioinformatics. The course reviews key gene classes (e.g., cytochromes, transporters) and key drugs (e.g., warfarin, clopidogrel, statins, cancer drugs) in the field. Resources for pharmacogenomics (e.g., PharmGKB, Drugbank, NCBI resources) are reviewed, as well as issues implementing pharmacogenomics testing in the clinical setting. Reading of key papers, including student presentations of this work; problem sets; final project selected with approval of instructor. Prerequisites: two of BIO 41, 42, 43, 44X, 44Y or consent of instructor.
Terms: Aut, Win, Spr, Sum | Units: 3

BIOMEDIN 225: Data Driven Medicine: Lectures

Lectures for BIOMEDIN 215.With the spread of electronic health records and increasingly low cost assays for patient molecular data, powerful data repositories with tremendous potential for biomedical research, clinical care and personalized medicine are being built. But these databases are large and difficult for any one specialist to analyze. To find the hidden associations within the full set of data, we introduce methods for data-mining at the internet scale, the handling of large-scale electronic medical records data for machine learning, methods in natural language processing and text-mining applied to medical records, methods for using ontologies for the annotation and indexing of unstructured content as well as semantic web technologies. Prerequisites: familiarity with statistics ( STATS 216) and biology.
Terms: Aut | Units: 2

BIOMEDIN 226: Digital Health Practicum in a Health Care Delivery System

Practical experience implementing clinical informatics solutions with a focus on digital health in one of the largest healthcare delivery systems in the United States. Individual meetings with senior clinical informatics leaders to discuss elements of successful projects. Implementation opportunities include supporting the use of electronic health records, engagement of patients and providers via a personal health record, use of informatics to support patient service centers, and improvement of patient access to clinical data. Consent of course instructors required at least one quarter prior to student enrollment in course.
Terms: Aut, Win, Spr, Sum | Units: 2-3
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints