2015-2016 2016-2017 2017-2018 2018-2019 2019-2020
Browse
by subject...
    Schedule
view...
 

61 - 70 of 83 results for: BIOHOPK

BIOHOPK 273H: Marine Conservation Biology (BIOHOPK 173H)

(Graduate students register for 273H.). Introduction to the key concepts of ecology and policy relevant to marine conservation issues at the population to ecosystems level. Focus on the origin and maintenance of biodiversity and conservation applications from both the biology and policy perspectives (for example, endangered species, captive breeding, reserve design, habitat fragmentation, ecosystem restoration/rehabilitation). Also includes emerging approaches such as ecosystem based management, ocean planning, and coupled social-ecological systems. The course will include lectures, readings and discussions of primary literature, and attendance at seminars with visiting scholars. Prerequisite: introductory biology; suggested: a policy and/or introductory ecology course.
Last offered: Spring 2019 | Repeatable for credit

BIOHOPK 273HA: Marine Conservation Biology - Seminar and Discussion Only (BIOHOPK 173HA)

(Graduate students register for 273HA.). Introduction to the key concepts of ecology and policy relevant to marine conservation issues at the population to ecosystems level. Focus on the origin and maintenance of biodiversity and conservation applications from both the biology and policy perspectives (for example, endangered species, captive breeding, reserve design, habitat fragmentation, ecosystem restoration/rehabilitation). Also includes emerging approaches such as ecosystem based management, ocean planning, and coupled social-ecological systems. The course will include lectures, readings and discussions of primary literature, and attendance at seminars with visiting scholars. Prerequisite: introductory biology; suggested: a policy and/or introductory ecology course.nStudents should enroll in this course if they are only joining the seminar and discussion. Students who will engage in the full course should enroll in BIOHOPK 173H/273H.
Last offered: Spring 2019

BIOHOPK 274: Hopkins Microbiology Course (BIO 274S, CEE 274S, ESS 253S)

(Formerly GES 274S.) Four-week, intensive. The interplay between molecular, physiological, ecological, evolutionary, and geochemical processes that constitute, cause, and maintain microbial diversity. How to isolate key microorganisms driving marine biological and geochemical diversity, interpret culture-independent molecular characterization of microbial species, and predict causes and consequences. Laboratory component: what constitutes physiological and metabolic microbial diversity; how evolutionary and ecological processes diversify individual cells into physiologically heterogeneous populations; and the principles of interactions between individuals, their population, and other biological entities in a dynamically changing microbial ecosystem. Prerequisites: CEE 274A and CEE 274B, or equivalents.
Last offered: Summer 2019 | Repeatable for credit

BIOHOPK 274H: Experimental Design and Probability (BIOHOPK 174H)

(Graduate students register for 274H.) Variability is an integral part of biology. Introduction to probability and its use in designing experiments to address biological problems. Focus is on experimental design and the use of linear models in testing hypotheses (e.g., analysis of variance, regression). Students will use R to explore and analyze locally relevant biological datasets. No programming or statistical background is assumed. Prerequisite: consent of instructor.
Terms: Spr | Units: 3
Instructors: Elahi, R. (PI)

BIOHOPK 275H: Marine Science and Conservation in a Changing World (BIOHOPK 175H)

Graduate students register for 275H. This hands-on, experiential course provides a broad foundation in marine science, and explores emerging opportunities for innovation in the study of life in the sea. Students are resident at Stanford¿s Hopkins Marine Station in Pacific Grove (90 miles south of main campus) where the diverse organisms and environments of Monterey Bay provide the focus for the course. Class meets daily with lectures, discussions, labs, and field work throughout the day. Three linked concentrations¿each 3 weeks long¿are taught sequentially to address (1) the extraordinary diversity of marine organisms and habitats, (2) the physiology and behavior of marine animals, and (3) the principles of marine ecology. Connecting these concentrations is a weekly seminar-based discussion of topics in marine conservation. This design permits deep concentration on each subject, and places emphasis on discussion, group dialog, individual exploration, and experiential learning. In the final week of the quarter, students complete an individual capstone project of their choosing. This course fulfills the same laboratory requirement as BIO 47.
Terms: Spr | Units: 16

BIOHOPK 276H: Estimates and Errors: The Theory of Scientific Measurement

Measurement plays a fundamental role in science, but many biologists have no formal training in what it means to measure something. Errors are inevitable in any measurement. Which are inherent, and which can be controlled? How do errors propagate? How can you decide which data to reject? When are uncertainties normal? In this course we will work our way into the theory of measurement, covering some topics that overlap with inferential statistics (but from a new and perhaps more intuitive perspective), and extending beyond those basics to include spectral analysis and the dangers of measurement in the digital realm.
Last offered: Autumn 2017

BIOHOPK 277H: Dynamics and Management of Marine Populations (BIOHOPK 177H)

(Graduate students register for 277H.) Course examines the ecological factors and processes that control natural and harvested marine populations. Course emphasizes mathematical models as tools to assess the dynamics of populations and to derive projections of their demographic fate under different management scenarios. Course objectives will be met by a combination of theoretical lectures, assigned readings and class discussions, case study analysis and interactive computer sessions.
Last offered: Winter 2018 | Repeatable for credit

BIOHOPK 279H: Physiological Ecology of Marine Megafauna (BIOHOPK 179H)

(Graduate students register for 279H.) The ocean is home to the largest animals of all-time. How, when, and why did gigantism evolve in different taxa? What are the consequences of large body size? This course will focus on how biological processes scale with body size, with an emphasis on oceanic megafauna including marine mammals, birds, fishes, and reptiles. In particular, the course will explore the functional mechanisms that generate the scaling relationships for physiological and ecological traits, such as metabolism, ecosystem function and body size evolution. Students will also be introduced to state-of-the-art technologies used to student marine megafauna in some of the most logistically challenging habitats on earth.
Last offered: Spring 2017

BIOHOPK 280: Short Course on Ocean Policy

The course will introduce graduate students in the natural and social sciences to ocean policy and governance in the US at national, regional, state, and local levels. Together with leaders in ocean science and policy, students will examine pressing issues in ocean sustainability from natural science, social science, and legal and policy perspectives, with an emphasis on the role of science in the policy and governance processes. Students will learn and apply practical skills in communication, leadership and interdisciplinary problem-solving through participation in a group project, interactive discussions and simulations, and field trips. Prerequisite: consent of instructor and by application due in winter.
Last offered: Summer 2017

BIOHOPK 281H: Physiology of Global Change (BIOHOPK 181H)

(Graduate students register for 281H.) Global change is leading to significant alterations in several environmental factors, including temperature, ocean acidity and oxygen availability. This course focuses on: (i) how these environmental changes lead to physiological stress and (ii) how, and to what extent, are organisms able to adapt through short-term acclimatization and evolutionary adaptation to cope with these stresses. A major focus of the class is to link changes in species' distribution patterns with underlying physiological mechanics that establish environmental optima and tolerance limits.
Last offered: Spring 2017
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints