2015-2016 2016-2017 2017-2018 2018-2019 2019-2020
Browse
by subject...
    Schedule
view...
 

1 - 10 of 38 results for: BIOE

BIOE 42: Physical Biology of Cells

Principles of transport, continuum mechanics, and fluids, with applications to cell biology. Topics include random walks, diffusion, Langevin dynamics, transport theory, low Reynolds number flow, and beam theory, with applications including quantitative models of protein trafficking in the cell, mechanics of the cell cytoskeleton, the effects of molecular noise in development, the electromagnetics of nerve impulses, and an introduction to cardiovascular fluid flow. Prerequisites: MATH 41, 42; CHEM 31A, B (or 31X); strongly recommended: CS 106A, PHYSICS 41, CME 100 or MATH 51, and CME 106; or instructor approval. 4 units, Spr (Huang, K)
Terms: Spr | Units: 4 | UG Reqs: WAY-AQR, WAY-SMA | Grading: Letter (ABCD/NP)
Instructors: Quake, S. (PI)

BIOE 70Q: Medical Device Innovation

BIOE 70Q introduces students to the design of medical technologies and the non-technical factors that impact their clinical adoption and market success. Guest speakers include engineers, doctors, and other professionals who have helped bring ideas from concept to clinical use. Hands-on design projects will challenge students to invent their own solutions to clinical needs. No previous engineering training is required.
Terms: Spr | Units: 3 | UG Reqs: WAY-CE | Grading: Letter (ABCD/NP)

BIOE 80: Introduction to Bioengineering (ENGR 80)

Broad but rigorous overview of the field of bioengineering, centered around the common theme of engineering analysis and design of biological systems. Topics include biomechanics, systems and synthetic biology, physical biology, biomolecular engineering, tissue engineering, and devices. Emphasis on critical thinking and problem solving approaches, and quantitative methods applied to biology. 4 units, Spr (Cochran)
Terms: Spr | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-FR | Grading: Letter (ABCD/NP)

BIOE 103: Systems Physiology and Design

Physiology of intact human tissues, organs, and organ systems in health and disease, and bioengineering tools used (or needed) to probe and model these physiological systems. Topics: Clinical physiology, network physiology and system design/plasticity, diseases and interventions (major syndromes, simulation, and treatment, instrumentation for intervention, stimulation, diagnosis, and prevention), and new technologies including tissue engineering and optogenetics. Discussions of pathology of these systems in a clinical-case based format, with a view towards identifying unmet clinical needs. Learning computational skills that not only enable simulation of these systems but also apply more broadly to biomedical data analysis. Prerequisites: MATH 41, 42; CME 102; PHY 41; BIO 41, 42; strongly recommended PHY 43; or instructor approval.
Terms: Spr | Units: 4 | UG Reqs: WAY-AQR, WAY-SMA | Grading: Letter (ABCD/NP)

BIOE 103B: Systems Physiology and Design

*ONLINE Offering of BIOE103. This pilot class, BIOE103B, is an entirely online offering with the same content, learning goals, and prerequisites as BIOE103. Students attend class by watching videos and completing assignments remotely. Students may attend recitation and office hours in person, but cannot attend the BIOE103 in-person lecture due to room capacity restraints.* Physiology of intact human tissues, organs, and organ systems in health and disease, and bioengineering tools used (or needed) to probe and model these physiological systems. Topics: Clinical physiology, network physiology and system design/plasticity, diseases and interventions (major syndromes, simulation, and treatment, instrumentation for intervention, stimulation, diagnosis, and prevention), and new technologies including tissue engineering and optogenetics. Discussions of pathology of these systems in a clinical-case based format, with a view towards identifying unmet clinical needs. Learning computational skills that not only enable simulation of these systems but also apply more broadly to biomedical data analysis. Prerequisites: MATH 41, 42; CME 102; PHY 41; BIO 41, 42; strongly recommended PHY 43; or instructor approval.
Terms: Spr | Units: 4 | UG Reqs: WAY-AQR, WAY-SMA | Grading: Letter (ABCD/NP)

BIOE 122: Biosecurity and Bioterrorism Response (PUBLPOL 122, SURG 122)

Overview of the most pressing biosecurity issues facing the world today. Guest lecturers have included former Secretary of State Condoleezza Rice, former Special Assistant on BioSecurity to Presidents Clinton and Bush Jr. Dr. Ken Bernard, Chief Medical Officer of the Homeland Security Department Dr. Alex Garza, eminent scientists, innovators and physicians in the field, and leaders of relevant technology companies. How well the US and global healthcare systems are prepared to withstand a pandemic or a bioterrorism attack, how the medical/healthcare field, government, and the technology sectors are involved in biosecurity and pandemic or bioterrorism response and how they interface, the rise of synthetic biology with its promises and threats, global bio-surveillance, making the medical diagnosis, isolation, containment, hospital surge capacity, stockpiling and distribution of countermeasures, food and agriculture biosecurity, new promising technologies for detection of bio-threats and countermeasures. Open to medical, graduate, and undergraduate students. No prior background in biology necessary. This course satisfies the TiS requirement for Engineering students; please check with your major advisor to verify this. 4 units for twice weekly attendance (Mon. and Wed.); additional 1 unit for writing a research paper for 5 units total maximum. PLEASE NOTE: This class will meet for the first time on Wednesday, April 1.
Terms: Spr | Units: 4-5 | UG Reqs: GER: DB-NatSci, GER:EC-GlobalCom | Grading: Letter or Credit/No Credit
Instructors: Trounce, M. (PI)

BIOE 131: Ethics in Bioengineering

Bioengineering focuses on the development and application of new technologies in the biology and medicine. These technologies often have powerful effects on living systems at the microscopic and macroscopic level. They can provide great benefit to society, but they also can be used in dangerous or damaging ways. These effects may be positive or negative, and so it is critical that bioengineers understand the basic principles of ethics when thinking about how the technologies they develop can and should be applied. On a personal level, every bioengineer should understand the basic principles of ethical behavior in the professional setting. This course will involve substantial writing, and will use case-study methodology to introduce both societal and personal ethical principles, with a focus on practical applications.
Terms: Spr | Units: 3 | UG Reqs: GER:EC-EthicReas, WAY-ER | Grading: Letter (ABCD/NP)

BIOE 191: Bioengineering Problems and Experimental Investigation

Directed study and research for undergraduates on a subject of mutual interest to student and instructor. Prerequisites: consent of instructor and adviser. (Staff)
Terms: Aut, Win, Spr, Sum | Units: 1-5 | Repeatable for credit | Grading: Letter or Credit/No Credit

BIOE 212: Introduction to Biomedical Informatics Research Methodology (BIOMEDIN 212, CS 272, GENE 212)

Terms: Spr | Units: 3 | Grading: Medical Option (Med-Ltr-CR/NC)
Instructors: Altman, R. (PI)

BIOE 244: Advanced Frameworks and Approaches for Engineering Integrated Genetic Systems

Concepts and techniques for the design and implementation of engineered genetic systems. Topics covered include the quantitative exploration of tools that support (a) molecular component engineering, (b) abstraction and composition of functional genetic devices, (c) use of control and dynamical systems theory in device and systems design, (d) treatment of molecular "noise", (e) integration of DNA-encoded programs within cellular chassis, (f) designing for evolution, and (g) the use of standards in measurement, genetic layout architecture, and data exchange. Prerequisites: CME104, CME106, CHEM 33, BIO41, BIO42, BIOE41, BIOE42, and BIOE44 (or equivalents), or permission of the instructors.
Terms: Spr | Units: 4 | Grading: Letter or Credit/No Credit
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints