2015-2016 2016-2017 2017-2018 2018-2019 2019-2020
by subject...

51 - 60 of 102 results for: BIOE

BIOE 261: Principles and Practice of Stem Cell Engineering (NSUR 261)

Quantitative models used to characterize incorporation of new cells into existing tissues emphasizing pluripotent cells such as embryonic and neural stem cells. Molecular methods to control stem cell decisions to self-renew, differentiate, die, or become quiescent. Practical, industrial, and ethical aspects of stem cell technology application. Final projects: team-reviewed grants and business proposals.
Last offered: Autumn 2008

BIOE 273: Biodesign for Mobile Health (MED 273)

This course examines the emerging mobile health industry. Mobile health refers to the provision of health services and information via digital technologies such as mobile phones and wearable sensors. Faculty from Stanford University and other academic institutions, as well as guest lecturers from the mobile health industry discuss factors driving needs in the field, explore opportunities and challenges that characterize the emerging mobile health innovation landscape, and present an overview of the technologies, initiatives, and companies that are transforming the way we access health care today.
Terms: Aut | Units: 1-3

BIOE 279: Computational Biology: Structure and Organization of Biomolecules and Cells (BIOMEDIN 279, BIOPHYS 279, CME 279, CS 279)

Computational techniques for investigating and designing the three-dimensional structure and dynamics of biomolecules and cells. These computational methods play an increasingly important role in drug discovery, medicine, bioengineering, and molecular biology. Course topics include protein structure prediction, protein design, drug screening, molecular simulation, cellular-level simulation, image analysis for microscopy, and methods for solving structures from crystallography and electron microscopy data. Prerequisites: elementary programming background ( CS 106A or equivalent) and an introductory course in biology or biochemistry.
Terms: Aut | Units: 3

BIOE 280: Skeletal Development and Evolution (ME 280)

The mechanobiology of skeletal growth, adaptation, regeneration, and aging is considered from developmental and evolutionary perspectives. Emphasis is on the interactions between mechanical and chemical factors in the regulation of connective tissue biology. Prerequisites: BIO 42, and ME 80 or BIOE 42.
Last offered: Spring 2016

BIOE 281: Biomechanics of Movement (ME 281)

Experimental techniques to study human and animal movement including motion capture systems, EMG, force plates, medical imaging, and animation. The mechanical properties of muscle and tendon, and quantitative analysis of musculoskeletal geometry. Projects and demonstrations emphasize applications of mechanics in sports, orthopedics, and rehabilitation.
Terms: Win | Units: 3
Instructors: Delp, S. (PI)

BIOE 282: Performance, Development, and Adaptation of Skeletal Muscle

Fundamentals of skeletal muscle by study of classical and recent research articles. Emphasis on the interactions between mechanics, biology, and electrophysiology in skeletal muscle performance, development, adaptation, control, and disease. Lab activities explore research methods discussed in class. Limited Enrollment. Applications due Friday, September 16th by 5pm. Applications available at http://bioe282.stanford.edu/. Prerequisites: engineering or biology core coursework. Fall (Cromie, Liske, Steele, Delp)
Last offered: Autumn 2011

BIOE 283: Mechanotransduction in Cells and Tissues (BIOPHYS 244, ME 244)

Mechanical cues play a critical role in development, normal functioning of cells and tissues, and various diseases. This course will cover what is known about cellular mechanotransduction, or the processes by which living cells sense and respond to physical cues such as physiological forces or mechanical properties of the tissue microenvironment. Experimental techniques and current areas of active investigation will be highlighted.
Terms: Aut | Units: 3

BIOE 284B: Cardiovascular Bioengineering (ME 284B)

Continuation of ME/ BIOE 284A. Integrative cardiovascular physiology, blood fluid mechanics, and transport in the microcirculation. Sensing, feedback, and control of the circulation. Overview of congenital and adult cardiovascular disease, diagnostic methods, and treatment strategies. Engineering principles to evaluate the performance of cardiovascular devices and the efficacy of treatment strategies.
Last offered: Winter 2011

BIOE 285: Computational Modeling in the Cardiovascular System (CME 285, ME 285)

This course introduces computational modeling methods for cardiovascular blood flow and physiology. Topics in this course include analytical and computational methods for solutions of flow in deformable vessels, one-dimensional equations of blood flow, cardiovascular anatomy, lumped parameter models, vascular trees, scaling laws, biomechanics of the circulatory system, and 3D patient specific modeling with finite elements; course will provide an overview of the diagnosis and treatment of adult and congenital cardiovascular diseases and review recent research in the literature in a journal club format. Students will use SimVascular software to do clinically-oriented projects in patient specific blood flow simulations.
Terms: Win | Units: 3
Instructors: Marsden, A. (PI)

BIOE 287: Introduction to Physiology and Biomechanics of Hearing (ME 166, ME 266)

Hearing is fundamental to our ability to communicate, yet in the US alone over 30 million people suffer some form of hearing impairment. As engineers and scientists, it is important for us to understand the underlying principles of the auditory system if we are to devise better ways of helping those with hearing loss. The goal of this course is to introduce undergraduate and graduate students to the anatomy, physiology, and biomechanics of hearing. Principles from acoustics, mechanics, and hydrodynamics will be used to build a foundational understanding of one of the most complex, interdisciplinary, and fascinating areas of biology. Topics include the evolution of hearing, computational modeling approaches, fluid-structure interactions, ion-channel transduction, psychoacoustics, diagnostic tools, and micrometer to millimeter scale imaging methods. We will also study current technologies for mitigating hearing loss via passive and active prostheses, as well as future regenerative therapies.
Last offered: Spring 2016
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
updating results...
UG Requirements (GERs)
updating results...
updating results...
updating results...
© Stanford University | Terms of Use | Copyright Complaints