2015-2016 2016-2017 2017-2018 2018-2019 2019-2020
Browse
by subject...
    Schedule
view...
 

11 - 20 of 28 results for: BIOE

BIOE 191: Bioengineering Problems and Experimental Investigation

Directed study and research for undergraduates on a subject of mutual interest to student and instructor. Prerequisites: consent of instructor and adviser. (Staff)
Terms: Aut, Win, Spr, Sum | Units: 1-5 | Repeatable for credit

BIOE 191X: Out-of-Department Advanced Research Laboratory in Bioengineering

Terms: Aut, Win, Spr, Sum | Units: 1-15 | Repeatable for credit

BIOE 193: Interdisciplinary Approaches to Human Health Research (BIO 193, CHEM 193, CHEMENG 193)

For undergraduate students participating in the Stanford ChEM-H Undergraduate Scholars Program. This course will expose students to interdisciplinary research questions and approaches that span chemistry, engineering, biology, and medicine. Focus is on the development and practice of scientific reading, writing, and presentation skills intended to complement hands-on laboratory research. Students will read scientific articles, write research proposals, make posters, and give presentations.
Terms: Win, Spr | Units: 1 | Repeatable for credit

BIOE 201C: Diagnostic Devices Lab (BIOE 301C)

This course exposes students to the engineering principles and clinical application of medical devices through lectures and hands-on labs, performed in teams of two. Teams take measurements with these devices and fit their data to theory presented in the lecture. Devices covered include X-ray, CT, MRI, EEG, ECG, Ultrasound and BMI (Brain-machine interface). Prerequisites: BIOE 103 or BIOE 300B.
Terms: Spr | Units: 2

BIOE 212: Introduction to Biomedical Informatics Research Methodology (BIOMEDIN 212, CS 272, GENE 212)

Capstone Biomedical Informatics (BMI) experience. Hands-on software building. Student teams conceive, design, specify, implement, evaluate, and report on a software project in the domain of biomedicine. Creating written proposals, peer review, providing status reports, and preparing final reports. Issues related to research reproducibility. Guest lectures from professional biomedical informatics systems builders on issues related to the process of project management. Software engineering basics. Because the team projects start in the first week of class, attendance that week is strongly recommended. Prerequisites: BIOMEDIN 210 or 214 or 215 or 217 or 260. Preference to BMI graduate students. Consent of instructor required.
Terms: Spr | Units: 3-5

BIOE 256: Technology Assessment and Regulation of Medical Devices (MS&E 256)

Regulatory approval and reimbursement for new health technologies are critical success factors for product commercialization. This course explores the regulatory and payer environment in the U.S. and abroad, as well as common methods of health technology assessment. Students will learn frameworks to identify factors relevant to the adoption of new health technologies, and the management of those factors in the design and development phases of bringing a product to market through case studies, guest speakers from government (FDA) and industry, and a course project.
Terms: Spr | Units: 3
Instructors: Pietzsch, J. (PI)

BIOE 260: Tissue Engineering (ORTHO 260)

Principles of tissue engineering and design strategies for practical applications for tissue repair. Topics include tissue morphogenesis, stem cells, biomaterials, controlled drug and gene delivery, and paper discussions. Students will learn skills for lab research through interactive lectures, paper discussions and research proposal development. Students work in small teams to work on develop research proposal for authentic tissue engineering problems. Lab sessions will teach techniques for culturing cells in 3D, as well as fabricating and characterizing hydrogels as 3D cell niche.
Terms: Spr | Units: 4
Instructors: Yang, F. (PI)

BIOE 301C: Diagnostic Devices Lab (BIOE 201C)

This course exposes students to the engineering principles and clinical application of medical devices through lectures and hands-on labs, performed in teams of two. Teams take measurements with these devices and fit their data to theory presented in the lecture. Devices covered include X-ray, CT, MRI, EEG, ECG, Ultrasound and BMI (Brain-machine interface). Prerequisites: BIOE 103 or BIOE 300B.
Terms: Spr | Units: 2

BIOE 313: Neuromorphics: Brains in Silicon (EE 207)

(Formerly EE 304) Neuromorphic systems run perceptual, cognitive and motor tasks in real-time on a network of highly interconnected nonlinear units. To maximize density and minimize energy, these units--like the brain's neurons--are heterogeneous and stochastic. The first half of the course covers learning algorithms that automatically synthesize network configurations to perform a desired computation on a given heterogeneous neural substrate. The second half of the course surveys system-on-a-chip architectures that efficiently realize highly interconnected networks and mixed analog-digital circuit designs that implement area and energy-efficient nonlinear units. Prerequisites: EE102A is required.
Terms: Spr | Units: 3

BIOE 355: Advanced Biochemical Engineering (CHEMENG 355)

Combines biological knowledge and methods with quantitative engineering principles. Quantitative review of biochemistry and metabolism; recombinant DNA technology and synthetic biology (metabolic engineering). The production of protein pharaceuticals as a paradigm for the application of chemical engineering principles to advanced process development within the framework of current business and regulatory requirements. Prerequisite: CHEMENG 181 (formerly 188) or BIOSCI 41, or equivalent.
Terms: Spr | Units: 3
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints