2015-2016 2016-2017 2017-2018 2018-2019 2019-2020
Browse
by subject...
    Schedule
view...
 

11 - 20 of 27 results for: BIOE ; Currently searching autumn courses. You can expand your search to include all quarters

BIOE 273: Biodesign for Digital Health (MED 273)

Health care is facing significant cross-industry challenges and opportunities created by a number of factors including: the increasing need for improved access to affordable, high-quality care; growing demand from consumers for greater control of their health and health data; the shift in focus from sick care to prevention and health optimization; aging demographics and the increased burden of chronic conditions; and new emphasis on real-world, measurable health outcomes for individuals and populations. Moreover, the delivery of health information and services is no longer tied to traditional brick and mortar hospitals and clinics: it has increasingly become "mobile," enabled by apps, sensors, wearables; simultaneously, it has been augmented and often revolutionized by emerging digital and information technologies, as well as by the data that these technologies generate. This multifactorial transformation presents opportunities for innovation across the entire cycle of care, from welln more »
Health care is facing significant cross-industry challenges and opportunities created by a number of factors including: the increasing need for improved access to affordable, high-quality care; growing demand from consumers for greater control of their health and health data; the shift in focus from sick care to prevention and health optimization; aging demographics and the increased burden of chronic conditions; and new emphasis on real-world, measurable health outcomes for individuals and populations. Moreover, the delivery of health information and services is no longer tied to traditional brick and mortar hospitals and clinics: it has increasingly become "mobile," enabled by apps, sensors, wearables; simultaneously, it has been augmented and often revolutionized by emerging digital and information technologies, as well as by the data that these technologies generate. This multifactorial transformation presents opportunities for innovation across the entire cycle of care, from wellness, to acute and chronic diseases, to care at the end of life. But how does one approach innovation in digital health to address these health care challenges while ensuring the greatest chance of success? At Stanford Biodesign, we believe that innovation is a process that can be learned, practiced, and perfected; and, it starts with a need. In Biodesign for Digital Health, students will learn about digital health and the Biodesign needs-driven innovation process from over 50 industry experts. Over the course of ten weeks, these speakers join the teaching team in a dynamic classroom environment that includes lectures, panel discussions, and breakout sessions. These experts represent startups, corporations, venture capital firms, accelerators, research labs, health organizations, and more. Student teams will take actual digital and mobile health challenges and learn how to apply Biodesign innovation principles to research and evaluate needs, ideate solutions, and objectively assess them against key criteria for satisfying the needs. Teams take a hands-on approach with the support of need coaches and mentors. On the final day of class, teams present to a panel of digital health experts and compete for project extension funding. Friday section will be used for team projects and for scheduled workshops. Limited enrollment for this course. Students need to submit their application online via: https://stanforduniversity.qualtrics.com/jfe/form/SV_28ZWIF8RJsyMvCR
Terms: Aut | Units: 3

BIOE 279: Computational Biology: Structure and Organization of Biomolecules and Cells (BIOMEDIN 279, BIOPHYS 279, CME 279, CS 279)

Computational techniques for investigating and designing the three-dimensional structure and dynamics of biomolecules and cells. These computational methods play an increasingly important role in drug discovery, medicine, bioengineering, and molecular biology. Course topics include protein structure prediction, protein design, drug screening, molecular simulation, cellular-level simulation, image analysis for microscopy, and methods for solving structures from crystallography and electron microscopy data. Prerequisites: elementary programming background ( CS 106A or equivalent) and an introductory course in biology or biochemistry.
Terms: Aut | Units: 3

BIOE 283: Mechanotransduction in Cells and Tissues (BIOPHYS 244, ME 244)

Mechanical cues play a critical role in development, normal functioning of cells and tissues, and various diseases. This course will cover what is known about cellular mechanotransduction, or the processes by which living cells sense and respond to physical cues such as physiological forces or mechanical properties of the tissue microenvironment. Experimental techniques and current areas of active investigation will be highlighted. This class is for graduate students only.
Terms: Aut | Units: 3

BIOE 291: Principles and Practice of Optogenetics for Optical Control of Biological Tissues

Principles and practice of optical control of biological processes (optogenetics), emphasizing bioengineering approaches. Theoretical, historical, and current practice of the field. Requisite molecular-genetic, optoelectronic, behavioral, clinical, and ethical concepts, and mentored analysis and presentation of relevant papers. Final projects of research proposals and a laboratory component in BioX to provide hands-on training. Contact instructor before registering.
Terms: Aut | Units: 3

BIOE 300B: Quantitative Physiology

An engineering approach to understanding physiological phenomenon. Course introduces weekly topics in biology and human physiology paired with a mathematical approach to modeling and understanding that week's topic. No strict prerequisites. No prior background in biology is required or assumed. Familiarity with linear algebra, statistics, and programming is recommended. Course information at: http://bioe300b.stanford.edu
Terms: Aut | Units: 3

BIOE 301A: Molecular and Cellular Engineering Lab

Preference to Bioengineering graduate students. Practical applications of biotechnology and molecular bioengineering including recombinant DNA techniques, molecular cloning, microbial cell growth and manipulation, and library screening. Emphasis is on experimental design and data analysis. Limited enrollment. Fall
Terms: Aut | Units: 2
Instructors: Huang, P. (PI)

BIOE 361: Biomaterials in Regenerative Medicine (MATSCI 381)

Materials design and engineering for regenerative medicine. How materials interact with cells through their micro- and nanostructure, mechanical properties, degradation characteristics, surface chemistry, and biochemistry. Examples include novel materials for drug and gene delivery, materials for stem cell proliferation and differentiation, and tissue engineering scaffolds. Prerequisites: undergraduate chemistry, and cell/molecular biology or biochemistry.
Terms: Aut | Units: 3

BIOE 371: Global Biodesign: Medical Technology in an International Context (MED 271)

This course ( BIOE371, MED271) exposes students to the challenges and opportunities of developing and implementing innovative health technologies to help patients around the world. Non-communicable diseases, such as metabolic and chronic respiratory disease, now account for 7 in 10 deaths worldwide, creating the need for innovative health technologies that work across diverse global markets. At the beginning of the quarter, the course will provide an overview of the dynamic global health technology industry. Next, faculty members, guest experts, and students will discuss key differences and similarities when commercializing new products in the for-profit health technology sector across six important regions: the US and Europe, China and Japan, and India and Brazil. Finally, the course will explore critical ¿global health¿ issues that transcend international borders and how technology can be leveraged to address them. This section will culminate with an interactive debate focused on whether for-profit, nonprofit, or hybrid models are best for implementing sustainable global health solutions. The last class will be devoted to synthesis, reflection, and a discussion of career opportunities in the global health technology field.
Terms: Aut | Units: 1

BIOE 376: Startup Garage: Design

A hands-on, project-based course, in which teams identify and work with users, domain experts, and industry participants to identify an unmet customer need, design new products or services that meet that need, and develop business models to support the creation and launch of startup products or services. This course integrates methods from human-centered design, lean startup, and business model planning. Each team will conceive, design, build, and field-test critical aspects of both the product or service and the business model.
Terms: Aut | Units: 4

BIOE 385: Biomaterials for Drug Delivery (MATSCI 385)

Fundamental concepts in engineering materials for drug delivery. The human body is a highly interconnected network of different tissues and there are all sorts of barriers to getting pharmaceutical drugs to the right place at the right time. Topics include drug delivery mechanisms (passive, targeted), therapeutic modalities and mechanisms of action, engineering principles of controlled release and quantitative understanding of drug transport, chemical and physical characteristics of delivery molecules and assemblies, significance of biodistribution and pharmacokinetic models, toxicity of biomaterials and drugs, and immune responses.
Terms: Aut | Units: 3
Instructors: Appel, E. (PI)
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints