2017-2018 2018-2019 2019-2020 2020-2021 2021-2022
Browse
by subject...
    Schedule
view...
 

11 - 20 of 139 results for: BIO ; Currently searching offered courses. You can also include unoffered courses

BIO 32S: Introduction to Biotechnology: Detecting and Treating Disease

This course will examine the basic concepts of biotechnology and the instrumentation and techniques used in the manipulation of nucleic acids (DNA and RNA). Students will learn how biotechnology's tools and techniques are being used to help identify and fight disease, with a special emphasis on tools that help detect viral infections such as COVID-19. This course will also examine the ethical and privacy issues associated with genetic testing.
Terms: Sum | Units: 3
Instructors: Chung, J. (PI)

BIO 35N: Catching up with Traditional Ecological Knowledge

Traditional ecological knowledge - the knowledge developed and maintained by local communities over many generations about their natural environment - is increasingly appreciated as fundamental to solving environmental problems. In this seminar, we will explore some of the cutting-edge research on traditional ecological knowledge and its conceptual and practical role in guiding ecosystem restoration. We will address some key questions. For example, what makes traditional ecological knowledge different from Western science? What led to the recent increase in Western scientists' appreciation of traditional ecological knowledge? How can traditional ecological knowledge inform ecosystem restoration in a world that is undergoing rapid climate change, land use change, and biological invasion? And how can traditional ecological knowledge be merged with Western science to achieve more successful ecosystem restoration? The core of this seminar will be discussion based on reading of primary articles. We will also practice science communication through podcast projects. The final goal is for each group consisting of 2-3 students to make a 5-minute podcast on the scientific topic of their choice from the materials we discuss in class.
Terms: Spr | Units: 3 | UG Reqs: WAY-SMA
Instructors: Fukami, T. (PI)

BIO 45: Introduction to Laboratory Research in Cell and Molecular Biology

Use modern molecular approaches to characterize a particular tumor-associated mutation in the human p53 tumor suppressor gene via expression and analysis in a yeast model system. Learn about the role of p53 as Guardian of the Genome and consider novel p53-directed tumor therapies through lectures and by reading and discussing journal articles. Use molecular visualization programs to examine the structure of the normal p53 protein and localize the alteration induced by the mutation you are investigating. Assay the ability of mutant p53 to activate expression of multiple reporter genes. Through facilitated discussions with teams of other students studying the same p53 mutant, consider a series of molecular explanations for your p53 mutant's functional defects. Conduct lab experiments to test these hypotheses, analyze data, collaboratively interpret these data, and present your findings through a team oral presentation, as well as a scientific poster. Although there are no pre-requisites to enroll in this class, it will be helpful if you have already taken or are concurrently enrolled in introductory courses in cell and molecular biology ( BIO 82 and 83 or HUMBIO 2A and 3A) and general chemistry ( CHEM 31A and 31B or CHEM 31M).
Terms: Aut, Win | Units: 4

BIO 46: Introduction to Research in Ecology and Evolutionary Biology

The goal of this course is to develop an understanding of how to conduct biological research, using topics in Ecology as practical examples. This includes the complete scientific process: assessing background literature, generating testable hypotheses, learning techniques for data collection, analyzing data using appropriate statistical methods, and writing and sharing results. To build these skills, this course focuses on the microorganisms associated with lichen epiphytes and their interactions with air pollution and other environmental variables. Students, working in teams, develop novel research hypotheses and execute the necessary experiments and measurements to test these hypotheses. In addition, students will learn how to manipulate, visualize, and analyze data in the statistical programming language R. The capstone of the course is a research paper in the style of a peer-reviewed journal article, as well as an educational video designed for a general audience that communicates research findings. The Tuesday lecture session will generally meet for only about 60-70 minutes. IMPORTANT NOTE: Students who require BIO 46 to satisfy the WIM requirement for the Biology major MUST take this course for a letter grade.
Terms: Win | Units: 4

BIO 47: Introduction to Research in Ecology and Evolutionary Biology

The goal of this course is to develop an understanding of how to conduct biological research, using a topic in Ecology, Evolutionary Biology, and Plant Biology as a practical example. This includes the complete scientific process: assessing background literature, generating testable hypotheses, learning techniques for field- and lab-based data collection, analyzing data using appropriate statistical methods, and, finally, writing and sharing your results. To build these skills, this course will focus on nectar microbes at Stanford's nearby Jasper Ridge Biological Preserve. Students, working in teams, will develop novel research hypotheses and execute the necessary experiments and measurements to test these hypotheses. The capstone of the course is an oral presentation of student teams' research findings, as well as a research paper written in the style of a peer-reviewed journal article. Labs will be completed both on campus and at Jasper Ridge. Although there are no pre-requisites to enroll in the class, it will be helpful if you have already taken BIO 81 or HUMBIO 2A. IMPORTANT NOTE: Satisfies WIM requirement in Biology but must be taken for a letter grade.
Terms: Spr | Units: 4

BIO 61: Science as a Creative Process (APPPHYS 61)

What is the process of science, and why does creativity matter? We'll delve deeply into the applicability of science in addressing a vast range of real-world problems. This course is designed to teach the scientific method as it's actually practiced by working scientists. It will cover how to ask a well-posed question, how to design a good experiment, how to collect and interpret quantitative data, how to recover from error, and how to communicate findings. Facts matter! Course topics will include experimental design, statistics and statistical significance, formulating appropriate controls, modeling, peer review, and more. The course will incorporate a significant hands-on component featuring device fabrication, testing, and measurement. Among other "Dorm Science" activities, we'll be distributing Arduino microcontroller kits and electronic sensors, then use these items, along with other materials, to complete a variety of group and individual projects outside the classroom. The final course assignment will be to develop and write a scientific grant proposal to test a student-selected myth or scientific controversy. Although helpful, no prior experience with electronics or computer programming is required. Recommended for freshmen.
Terms: Spr | Units: 4 | UG Reqs: WAY-AQR, WAY-SMA

BIO 63: Science of Covid-19

This course is designed to help you apply knowledge from an introductory high school biology class to tackle problems related to Covid-19. We will examine how SARS-CoV-2 attacks cells, how the immune system responds, and how this information can be used to design drugs and vaccines. Emphasis will be placed on critical thinking, scientific experimentation, and analyzing data. After taking this course, you will have a broader understanding of different approaches scientists take to probe and learn about biological systems.
Terms: Spr | Units: 4
Instructors: Khalfan, W. (PI)

BIO 71: Planet Ocean (ESS 71)

Oceans make up the majority of our planet's area and living spaces and are fundamental to biodiversity, climate, food and commerce.This course covers integration of the oceanography and marine biology of diverse ocean habitats such as the deep sea, coral reefs, open ocean, temperate coasts, estuaries and polar seas. Lectures include state of the art knowledge as well as emerging technologies for future exploration. The second section focuses on how the oceans link to the global environment, and how ocean capacity helps determine human sustainability.
Terms: Win | Units: 4 | UG Reqs: WAY-SMA

BIO 81: Introduction to Ecology

This course will introduce you to the first principles of the science of ecology, the study of interactions between organisms and their environment. Contact Waheeda Khalfan (wkhalfan@stanford.edu) for logistical questions. Prerequisites: None.
Terms: Aut | Units: 4 | UG Reqs: WAY-SMA

BIO 82: Genetics

The focus of the course is on the basic mechanisms underlying the transmission of genetic information and on the use of genetic analysis to study biological and medical questions. Major topics will include: (1) the use of existing genetic variation in humans and other species to identify genes that play an important role in determining traits and disease-susceptibility, (2) the analysis of mutations in model organisms and their use in the investigation of biological processes and questions and (3) using genetic information for diagnosis and the potential for genetic manipulations to treat disease. Prerequisites: None, but BIO 83 is recommended. Attendance at a discussion section held once a week is mandatory. For logistical questions about the course, please contact Waheeda Khalfan (wkhalfan@stanford.edu).
Terms: Win | Units: 4 | UG Reqs: WAY-SMA
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints