2015-2016 2016-2017 2017-2018 2018-2019 2019-2020
Browse
by subject...
    Schedule
view...
 

51 - 60 of 71 results for: AA

AA 273: State Estimation and Filtering for Aerospace Systems

Kalman filtering, recursive Bayesian filtering, and nonlinear filter architectures including the extended Kalman filter, particle filter, and unscented Kalman filter. Observer-based state estimation for linear and non-linear systems. Examples from aerospace, including state estimation for fixed-wing aircraft, rotorcraft, spacecraft, and planetary rovers, with applications to control, navigation, and autonomy.
Terms: Spr | Units: 3

AA 274: Principles of Robotic Autonomy

Basic principles for endowing mobile autonomous robots with perception, planning, and decision-making capabilities. Algorithmic approaches for robot perception, localization, and simultaneous localization and mapping; control of non-linear systems, learning-based control, and robot motion planning; introduction to methodologies for reasoning under uncertainty, e.g., (partially observable) Markov decision processes. Extensive use of the Robot Operating System (ROS) for demonstrations and hands-on activities. Prerequisite: CS 106A or equivalent.
Terms: Win | Units: 3

AA 277: Multi-robot Control, Communication, and Sensing

Survey of current research topics in multi-robot systems including multi-agent consensus, formation control, coverage control and sensor deployment, collision avoidance, cooperative mapping, and distributed Bayesian filtering. Students will develop skills in evaluating and critiquing research papers, and will conduct a final research project.
Terms: Win | Units: 3

AA 279A: Space Mechanics

Orbits of near-earth satellites and interplanetary probes; relative motion in orbit; transfer and rendezvous; orbit determination; influence of earth's oblateness; sun and moon effects on earth satellites; decay of satellite orbits; invited lectures from industry. Prerequisite: ENGR 15 and familiarity with MatLab.
Terms: Win | Units: 3

AA 279B: Advanced Space Mechanics

Restricted 3-body problem. Relative motion, Hill's and Clohessy-Wiltshire equations. Lambert's problem. Satellite constellations and optimization. Communications and link budgets. Space debris. High fidelity simulation. Interplanetary mission planning, launch windows and gravity assists. Basic trajectory optimization. Several guest lectures from practitioners in the field. Individual final project chosen in consultation with instructor. Prerequisites: 279A or equivalent with permission of instructor. Fluency with MATLAB (or another mathematical programming language with 2D and 3D plotting capabilities).
Last offered: Spring 2016

AA 279C: Spacecraft Attitude Determination and Control

Attitude representation and parametrization; unperturbed and perturbed attitude dynamics and stability; attitude sensors and actuators; linear and nonlinear attitude control; optimal attitude maneuvers; dynamics of flexible spacecraft and space tethers; invited lectures from industry. Prerequisites: AA 242A, ENGR 105, AA 279A, and familiarity with MatLab.
Terms: Spr | Units: 3

AA 279D: Spacecraft Formation-Flying and Rendezvous

Keplerian orbital mechanics and orbital perturbations; the general relative motion problem; linear formation flying dynamics and control; impulsive station-keeping and reconfiguration; high order relative motion equations; formulation of relative motion using orbital elements; perturbation-invariant formations; nonlinear formation control; low-thrust propulsion for formation flying; relative navigation using GNSS and optical navigation; applications: sparse-aperture imaging, remote sensing, on-orbit servicing, rendezvous, and docking. Prerequisite: AA 242A, ENGR 105, AA 279A, and familiarity with MatLab.

AA 280: Smart Structures

Mechanics of smart materials and current approaches for engineering smart structures to monitor health, self heal, and adapt to environment. Definition of smart structures; constitutive models for smart materials; piezoelectric ceramics; electro-active polymers; shape memory alloys; bio-inspired materials and structures; self-healing materials; sensors and sensor networks; structural health monitoring; and energy harvesting. Prerequisite: AA 240A or consent of instructor.
Terms: Spr | Units: 3

AA 283: Aircraft and Rocket Propulsion

Introduction to the design and performance of airbreathing and rocket engines. Topics: the physical parameters used to characterize propulsion system performance; gas dynamics of nozzles and inlets; cycle analysis of ramjets, turbojets, turbofans, and turboprops; component matching and the compressor map; introduction to liquid and solid propellant rockets; multistage rockets; hybrid rockets; thermodynamics of reacting gases. Prerequisites: undergraduate background in fluid mechanics and thermodynamics.
Terms: Win | Units: 3

AA 284A: Advanced Rocket Propulsion

The principles of rocket propulsion system design and analysis. Fundamental aspects of the physics and chemistry of rocket propulsion. Focus is on the design and analysis of chemical propulsion systems including liquids, solids, and hybrids. Nonchemical propulsion concepts such as electric and nuclear rockets. Launch vehicle design and optimization issues including trajectory calculations. Limited enrollment. Prerequisites: 283 or consent of instructor.
Last offered: Autumn 2015
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints