2014-2015 2015-2016 2016-2017 2017-2018 2018-2019
Browse
by subject...
    Schedule
view...
 

1 - 10 of 101 results for: BIOE

BIOE 32Q: Bon App├ętit, Marie Curie! The Science Behind Haute Cuisine

This seminar is for anyone who loves food, cooking or science! We will focus on the science and biology behind the techniques and the taste buds. Not a single lecture will pass by without a delicious opportunity - each weekly meeting will include not only lecture, but also a lab demonstration and a chance to prepare classic dishes that illustrate that day's scientific concepts.
Terms: Spr | Units: 3 | Grading: Letter or Credit/No Credit
Instructors: Covert, M. (PI)

BIOE 36Q: The Biophysics of Innate Immunity

The innate immune system provides our first line of defense against disease--bothninfections, and cancer. Innate immune effectors such as host defense peptides arendeployed by numerous cell types (for instance neutrophils, macrophages, NK cells,nepithelial cells and keratinocytes) and work by biophysical mechanisms of action. The ourse draws from the primary literature and covers the evolution, structures, mechanisms,and physiological functions of important "innate immune effectors" (components of the innate immune system that can attack pathogens, and infected or host cells, and kill or incapacitate them directly). The course is aimed at students who have an interest in biochemistry, molecular/cellular biology, biophysics, and/or bioengineering.
Terms: not given this year, last offered Autumn 2012 | Units: 3 | Grading: Letter or Credit/No Credit

BIOE 42: Physical Biology

BIOE 42 is designed to introduce students to general engineering principles that have emerged from theory and experiments in biology. Topics covered will cover the scales from molecules to cells to organisms, including fundamental principles of entropy, diffusion, and continuum mechanics. These topics will link to several biological questions, including DNA organization, ligand binding, cytoskeletal mechanics, and the electromagnetic origin of nerve impulses. In all cases, students will learn to develop toy models that can explain quantitative measurements of the function of biological systems. Prerequisites: MATH 19, 20, 21 CHEM 31A, B (or 31X), PHYSICS 41; strongly recommended: CS 106A, CME 100 or MATH 51, and CME 106; or instructor approval.
Terms: Spr | Units: 4 | UG Reqs: WAY-AQR, WAY-SMA | Grading: Letter (ABCD/NP)

BIOE 44: Fundamentals for Engineering Biology Lab

Introduction to next-generation techniques in genetic, molecular, biochemical, and cellular engineering. Lab modules build upon current research including: gene and genome engineering via decoupled design and construction of genetic material; component engineering focusing on molecular design and quantitative analysis of experiments; device and system engineering using abstracted genetically encoded objects; and product development based on useful applications of biological technologies. Concurrent or previous enrollment in BIO 82 or BIO 83.
Terms: Aut, Spr | Units: 4 | UG Reqs: WAY-SMA | Grading: Letter (ABCD/NP)

BIOE 51: Anatomy for Bioengineers

Fundamental human anatomy, spanning major body systems and tissues including nerve, muscle, bone, cardiovascular, respiratory, gastrointestinal, and renal systems. Explore intricacies of structure and function, and how various body parts come together to form a coherent and adaptable living being. Correlate clinical conditions and therapeutic interventions. Participate in lab sessions with predissected cadaveric material and hands-on learning to gain understanding of the bioengineering human application domain. Encourage anatomical thinking, defining challenges and opportunities for bioengineers.
Terms: Spr | Units: 4 | Grading: Letter or Credit/No Credit

BIOE 60: Beyond Bitcoin: Applications of Distributed Trust

In the past, people have relied on trusted third parties to facilitate the transactions that define our lives: how we store medical records, how we share genomic information with scientists and drug companies, where we get our news, and how we communicate. Advances in distributed systems and cryptography allow us to eschew such parties. Today, we can create a global, irrefutable ledger of transactions, events, and diagnoses, such that rewriting history is computationally infeasible. What can we build on top of such a powerful data structure? What are the consequences of pseudo-legal contracts and promises written in mathematical ink? In this class, we will bring together experts in cryptography, healthcare, and distributed consensus with students across the university. The first weeks present a technical overview of block chain primitives. In the following weeks, the class will focus on discussing applications and policy issues through lectures and guest speakers from various domains across both academia and industry. Limited enrollment, subject to instructor approval.
Terms: Win | Units: 1 | Grading: Credit/No Credit
Instructors: Liphardt, J. (PI)

BIOE 70Q: Medical Device Innovation

BIOE 70Q invites students to apply design thinking to the creation of healthcare technologies. Students will learn about the variety of factors that shape healthcare innovation, and through hands-on design projects, invent their own solutions to clinical needs. Guest instructors will include engineers, doctors, entrepreneurs, and others who have helped bring ideas from concept to clinical use.
Terms: Spr | Units: 3 | UG Reqs: WAY-CE | Grading: Letter (ABCD/NP)

BIOE 80: Introduction to Bioengineering (Engineering Living Matter) (ENGR 80)

Students completing BIOE.80 should have a working understanding for how to approach the systematic engineering of living systems to benefit all people and the planet. Our main goals are (1) to help students learn ways of thinking about engineering living matter and (2) to empower students to explore the broader ramifications of engineering life. Specific concepts and skills covered include but are not limited to: capacities of natural life on Earth; scope of the existing human-directed bioeconomy; deconstructing complicated problems; reaction & diffusion systems; microbial human anatomy; conceptualizing the engineering of biology; how atoms can be organized to make molecules; how to print DNA from scratch; programming genetic sensors, logic, & actuators; biology beyond molecules (photons, electrons, etc.); what constraints limit what life can do?; what will be the major health challenges in 2030?; how does what we want shape bioengineering?; who should choose and realize various competing bioengineering futures?
Terms: Spr | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-FR | Grading: Letter (ABCD/NP)

BIOE 101: Systems Biology (BIOE 210)

Terms: Aut | Units: 3 | UG Reqs: WAY-AQR | Grading: Letter (ABCD/NP)

BIOE 102: Physical Biology of Macromolecules

Principles of statistical physics, thermodynamics, and kinetics with applications to molecular biology. Topics include entropy, temperature, chemical forces, enzyme kinetics, free energy and its uses, self assembly, cooperative transitions in macromolecules, molecular machines, feedback, and accurate replication. Prerequisites: MATH 19, 20, 21; CHEM 31A, B (or 31X); strongly recommended: PHYSICS 41, CME 100 or MATH 51, and CME 106; or instructor approval.
Terms: Spr | Units: 4 | UG Reqs: WAY-AQR, WAY-SMA | Grading: Letter (ABCD/NP)
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints