EE 103: Introduction to Matrix Methods (CME 103)
Introduction to applied linear algebra with emphasis on applications. Vectors, norm, and angle; linear independence and orthonormal sets; applications to document analysis. Clustering and the kmeans algorithm. Matrices, left and right inverses, QR factorization. Leastsquares and model fitting, regularization and crossvalidation. Constrained and nonlinear leastsquares. Applications include timeseries prediction, tomography, optimal control, and portfolio optimization. Undergraduate students should enroll for 5 units, and graduate students should enroll for 3 units. Prerequisites:
MATH 51 or
CME 100, and basic knowledge of computing (
CS 106A is more than enough, and can be taken concurrently).
EE103/CME103 and
Math 104 cover complementary topics in applied linear algebra. The focus of EE103 is on a few linear algebra concepts, and many applications; the focus of
Math 104 is on algorithms and concepts.
Terms: Aut, Win, Sum

Units: 35

UG Reqs: GER:DBMath, WAYAQR, WAYFR

Grading: Letter or Credit/No Credit
EE 108: Digital System Design
Digital circuit, logic, and system design. Digital representation of information. CMOS logic circuits. Combinational logic design. Logic building blocks, idioms, and structured design. Sequential logic design and timing analysis. Clocks and synchronization. Finite state machines. Microcode control. Digital system design. Control and datapath partitioning. Lab. *In Autumn, enrollment preference is given to EE majors. Any EE majors who must enroll in Autumn are invited to contact the instructor. Formerly
EE 108A.
Terms: Aut, Win

Units: 4

UG Reqs: GER:DBEngrAppSci, WAYAQR, WAYSMA

Grading: Letter or Credit/No Credit
Instructors:
Mitra, S. (PI)
EE 114: Fundamentals of Analog Integrated Circuit Design (EE 214A)
Analysis and simulation of elementary transistor stages, current mirrors, supply and temperatureindependent bias, and reference circuits. Overview of integrated circuit technologies, circuit components, component variations and practical design paradigms. Differential circuits, frequency response, and feedback will also be covered. Performance evaluation using computeraided design tools. Undergraduates must take
EE 114 for 4 units. Prerequisite: 101B. GER:DBEngrAppSci
Terms: Aut

Units: 34

UG Reqs: GER:DBEngrAppSci, WAYAQR, WAYSMA

Grading: Letter (ABCD/NP)
Instructors:
Arbabian, A. (PI)
;
Rekhi, A. (TA)
ENERGY 20N: Technology in the Greenhouse
The evidence that human activities are changing the climate is overwhelming. Energy use is woven throughout the fabric of modern societies, and energy systems are also a primary way that humans interact with the global Earth systems like climate. We know enough about the potential impacts of climate change to see that we need to transform the world¿s energy systems to a much cleaner set of technologies with much lower greenhouse gas emissions. Economies that use energy in a clean, costeffective way will be much more competitive in the future. The clean energy transition is now underway, with reductions in coal use and rapid growth in solar and wind deployment, but there is much more to do to limit the adverse impacts of climate change. This seminar explores technology options available to make the changes needed, in the developed and developing worlds. There is no shortage of energy available for our use. Instead, the challenge is to convert those energy resources into services like electricity and transportation, and that conversion requires technology, as well as policies and markets that enable innovation. The scale of the world¿s energy systems is dauntingly large, and we will need a welldiversified set of options to meet the challenge. Wind, solar, nuclear, carbon capture and storage for fossil fuel use, modified agriculture, electric (and automated) vehicles, advanced air conditioning, and many other technology options exist. We will consider these technologies and ask what barriers will have to be addressed if they are to be deployed at a scale large enough to reduce the impact climate change. The format will be discussions of technologies and their potential with a project and student presentations toward the end of the quarter.
Terms: Win

Units: 3

UG Reqs: WAYAQR, WAYSMA

Grading: Letter or Credit/No Credit
Instructors:
Orr, F. (PI)
ENERGY 101: Energy and the Environment (EARTHSYS 101)
Energy use in modern society and the consequences of current and future energy use patterns. Case studies illustrate resource estimation, engineering analysis of energy systems, and options for managing carbon emissions. Focus is on energy definitions, use patterns, resource estimation, pollution. Recommended:
MATH 21 or 42.
Terms: Win

Units: 3

UG Reqs: GER:DBEngrAppSci, WAYAQR, WAYSMA

Grading: Letter or Credit/No Credit
Instructors:
Durlofsky, L. (PI)
;
Kovscek, A. (PI)
ENERGY 104: Sustainable Energy for 9 Billion
This course explores the transition to a sustainable energy system at large scales (national and global), and over long time periods (decades). Explores the drivers of global energy demand and the fundamentals of technologies that can meet this demand sustainably. Focuses on constraints affecting largescale deployment of technologies, as well as inertial factors affecting this transition. Problems will involve modeling global energy demand, deployment rates for sustainable technologies, technological learning and economics of technical change. Recommended:
ENERGY 101, 102.
Terms: Spr

Units: 3

UG Reqs: WAYAQR

Grading: Letter (ABCD/NP)
Instructors:
Benson, S. (PI)
ENGLISH 184D: Race, Gender, and Literary Digital Humanities (CSRE 184E)
This course will introduce students to the ways that the practices of literary text mining can help us to understand, study, and shape our understanding of identity. Each week, we will spend one class discussing critical works by theorists like Toni Morrison, and Linda Martín Alcoff and digital scholars like Roopika Risam and Ted Underwood; we will then spend the second class of the week learning and practicing digital methods in programs like Python and Gephi. Students do not need any programming knowledge to take this class.
Terms: Spr

Units: 5

UG Reqs: WAYAQR

Grading: Letter or Credit/No Credit
Instructors:
Porter, J. (PI)
ENGLISH 184E: Literary Text Mining
This course will train students in applied methods for computationally analyzing texts for humanities research. The skills students will gain will include basic programming for textual analysis, applied statistical evaluation of results and the ability to present these results within a formal research paper or presentation. Students in the course will also learn the prerequisite steps of such an analysis including corpus selection and cleaning, metadata collection, and selecting and creating an appropriate visualization for the results.
Terms: Spr

Units: 5

UG Reqs: GER:DBHum, WAYAQR

Grading: Letter (ABCD/NP)
Instructors:
Heuser, R. (PI)
ENGR 10: Introduction to Engineering Analysis
Integrated approach to the fundamental scientific principles that are the cornerstones of engineering analysis: conservation of mass, atomic species, charge, momentum, angular momentum, energy, production of entropy expressed in the form of balance equations on carefully defined systems, and incorporating simple physical models. Emphasis is on setting up analysis problems arising in engineering. Topics: simple analytical solutions, numerical solutions of linear algebraic equations, and laboratory experiences. Provides the foundation and tools for subsequent engineering courses. Prerequisite: AP Physics and AP Calculus or equivalent.
Terms: Win

Units: 4

UG Reqs: GER:DBEngrAppSci, WAYAQR, WAYFR

Grading: Letter (ABCD/NP)
Instructors:
Cappelli, M. (PI)
ENGR 20: Introduction to Chemical Engineering (CHEMENG 20)
Overview of chemical engineering through discussion and engineering analysis of physical and chemical processes. Topics: overall staged separations, material and energy balances, concepts of rate processes, energy and mass transport, and kinetics of chemical reactions. Applications of these concepts to areas of current technological importance: biotechnology, energy, production of chemicals, materials processing, and purification. Prerequisite:
CHEM 31.
Terms: Win

Units: 4

UG Reqs: GER:DBEngrAppSci, WAYAQR, WAYSMA

Grading: Letter (ABCD/NP)
Instructors:
Tarpeh, W. (PI)
Filter Results: