2015-2016 2016-2017 2017-2018 2018-2019 2019-2020
Browse
by subject...
    Schedule
view...
 

41 - 50 of 151 results for: all courses

CS 109: Introduction to Probability for Computer Scientists

Topics include: counting and combinatorics, random variables, conditional probability, independence, distributions, expectation, point estimation, and limit theorems. Applications of probability in computer science including machine learning and the use of probability in the analysis of algorithms. Prerequisites: 103, 106B or X, multivariate calculus at the level of MATH 51 or CME 100 or equivalent.
Terms: Aut, Spr | Units: 3-5 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-FR | Grading: Letter or Credit/No Credit

CS 124: From Languages to Information (LINGUIST 180, LINGUIST 280)

Extracting meaning, information, and structure from human language text, speech, web pages, social networks. Introducing methods (string algorithms, edit distance, language modeling, machine learning classifiers, neural embeddings, inverted indices, collaborative filtering, PageRank), applications (chatbots, sentiment analysis, information retrieval, question answering, text classification, social networks, recommender systems), and ethical issues in both. Prerequisites: CS103, CS107, CS109.
Terms: Win | Units: 3-4 | UG Reqs: WAY-AQR | Grading: Letter or Credit/No Credit

CSRE 141S: Immigration and Multiculturalism (POLISCI 141A)

What are the economic effects of immigration? Do immigrants assimilate into local culture? What drives native attitudes towards immigrants? Is diversity bad for local economies and societies and which policies work for managing diversity and multiculturalism? We will address these and similar questions by synthesizing the conclusions of a number of empirical studies on immigration and multiculturalism. The emphasis of the course is on the use of research design and statistical techniques that allow us to move beyond correlations and towards causal assessments of the effects of immigration and immigration policy.
Terms: not given this year, last offered Spring 2018 | Units: 5 | UG Reqs: WAY-AQR, WAY-SI | Grading: Letter or Credit/No Credit

CSRE 180B: Introduction to Data Analysis (SOC 180B, SOC 280B)

Methods for analyzing and evaluating quantitative data in sociological research. Students will be taught how to run and interpret multivariate regressions, how to test hypotheses, and how to read and critique published data analyses.
Terms: Spr | Units: 4 | UG Reqs: GER:DB-SocSci, WAY-AQR, WAY-SI | Grading: Letter (ABCD/NP)

CSRE 184E: Race, Gender, and Literary Digital Humanities (ENGLISH 184D)

This course will introduce students to the ways that the practices of literary text mining can help us to understand, study, and shape our understanding of identity. Each week, we will spend one class discussing critical works by theorists like Toni Morrison, and Linda Martín Alcoff and digital scholars like Roopika Risam and Ted Underwood; we will then spend the second class of the week learning and practicing digital methods in programs like Python and Gephi. Students do not need any programming knowledge to take this class.
Terms: Spr | Units: 5 | UG Reqs: WAY-AQR | Grading: Letter or Credit/No Credit
Instructors: Porter, J. (PI)

EARTH 42: Landscapes and Tectonics of the San Francisco Bay Area (GEOLSCI 42)

Active faulting and erosion in the Bay Area, and its effects upon landscapes. Earth science concepts and skills through investigation of the valley, mountain, and coastal areas around Stanford. Faulting associated with the San Andreas Fault, coastal processes along the San Mateo coast, uplift of the mountains by plate tectonic processes, and landsliding in urban and mountainous areas. Field excursions; student projects.
Terms: Aut | Units: 4 | UG Reqs: WAY-AQR, WAY-SMA | Grading: Letter (ABCD/NP)
Instructors: Hilley, G. (PI)

EARTHSYS 11: Introduction to Geology (GEOLSCI 1)

Why are earthquakes, volcanoes, and natural resources located at specific spots on the Earth surface? Why are there rolling hills to the west behind Stanford, and soaring granite walls to the east in Yosemite? What was the Earth like in the past, and what will it be like in the future? Lectures, hands-on laboratories, in-class activities, and one field trip will help you see the Earth through the eyes of a geologist. Topics include plate tectonics, the cycling and formation of different types of rocks, and how geologists use rocks to understand Earth's history.
Terms: Spr | Units: 5 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA | Grading: Letter or Credit/No Credit
Instructors: Sperling, E. (PI)

EARTHSYS 46Q: Environmental Impact of Energy Systems: What are the Risks? (GEOLSCI 46Q)

In order to reduce CO2 emissions and meet growing energy demands during the 21st Century, the world can expect to experience major shifts in the types and proportions of energy-producing systems. These decisions will depend on considerations of cost per energy unit, resource availability, and unique national policy needs. Less often considered is the environmental impact of the different energy producing systems: fossil fuels, nuclear, wind, solar, and other alternatives. One of the challenges has been not only to evaluate the environmental impact but also to develop a systematic basis for comparison of environmental impact among the energy sources. The course will consider fossil fuels (natural gas, petroleum and coal), nuclear power, wind and solar and consider the impact of resource extraction, refining and production, transmission and utilization for each energy source.
Terms: not given this year, last offered Winter 2016 | Units: 3 | UG Reqs: WAY-AQR | Grading: Letter (ABCD/NP)

EARTHSYS 101: Energy and the Environment (ENERGY 101)

Energy use in modern society and the consequences of current and future energy use patterns. Case studies illustrate resource estimation, engineering analysis of energy systems, and options for managing carbon emissions. Focus is on energy definitions, use patterns, resource estimation, pollution. Recommended: MATH 21 or 42.
Terms: Win | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA | Grading: Letter or Credit/No Credit

EARTHSYS 104: The Water Course (GEOPHYS 104)

The Central Valley of California provides a third of the produce grown in the U.S., but has a desert climate, thus raising concerns about both food and water security. The pathway that water takes rainfall to the irrigation of fields (the water course) determines the quantity and quality of the available water. Working with various data sources (remote sensing, gauges, wells) allows us to model the water budget in the valley and explore the way in which recent droughts and increasing demand are impacting freshwater supplies.
Terms: Spr | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA | Grading: Letter or Credit/No Credit
Instructors: Knight, R. (PI)
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints