CEE 176B: 100% Clean, Renewable Energy and Storage for Everything (CEE 276B)
This course discusses elements of a transition to 100% clean, renewable energy in the electricity, transportation, heating/cooling, and industrial sectors for towns, cities, states, countries, and companies. It examines wind, solar, geothermal, hydroelectric, tidal, and wave characteristics and resources; electricity, heat, cold and hydrogen storage; transmission and distribution; matching power demand with supply on the grid: efficiency; replacing fossil with electric appliances and machines in the buildings and industry; energy, health, and climate costs and savings; land requirements; feedbacks of renewables to the atmosphere; and 100% clean, renewable energy roadmaps to guide transitions.
Terms: Spr

Units: 34

UG Reqs: GER:DBEngrAppSci, WAYAQR

Grading: Letter or Credit/No Credit
CEE 178: Introduction to Human Exposure Analysis (CEE 276)
(Graduate students register for 276.) Scientific and engineering issues involved in quantifying human exposure to toxic chemicals in the environment. Pollutant behavior, inhalation exposure, dermal exposure, and assessment tools. Overview of the complexities, uncertainties, and physical, chemical, and biological issues relevant to risk assessment. Lab projects. Recommended:
MATH 51. Apply at first class for admission.
Terms: Aut

Units: 3

UG Reqs: GER:DBEngrAppSci, WAYAQR, WAYSMA

Grading: Letter (ABCD/NP)
Instructors:
Kopperud, R. (PI)
CHEM 134: Instrumental Analysis Principles and Practice
The core objectives of the course will focus upon introducing and providing handson practice with analytical separation, spectroscopic identification, and calibrated quantification with strong technical communication (for the WritingintheMajor requirement) emphasized throughout the course. Lectures will focus upon theory and laboratory activities will provide handson practice with the GC, LC, XPS, MS, and UV/Vis instruments. Data analysis will be emphasized throughout the course with MATLAB being the primary tool for plotting and computations. Statistical measurements will be introduced to gauge the quality and validity of data. Lectures will be three times a week with a required fourhour laboratory section. The course will conclude with a studentdeveloped project, focusing upon separation and quantification, and a poster presentation. The course should be completed prior to
Chem 174/176/184. Prerequisite:
Chem 31B or 31X and concurrent enrollment in
Chem 33.
Terms: Spr

Units: 5

UG Reqs: GER: DBNatSci, WAYAQR, WAYSMA

Grading: Letter (ABCD/NP)
CHEMENG 20: Introduction to Chemical Engineering (ENGR 20)
Overview of chemical engineering through discussion and engineering analysis of physical and chemical processes. Topics: overall staged separations, material and energy balances, concepts of rate processes, energy and mass transport, and kinetics of chemical reactions. Applications of these concepts to areas of current technological importance: biotechnology, energy, production of chemicals, materials processing, and purification. Prerequisite:
CHEM 31.
Terms: Spr

Units: 4

UG Reqs: GER:DBEngrAppSci, WAYAQR, WAYSMA

Grading: Letter (ABCD/NP)
CHEMENG 60Q: Environmental Regulation and Policy
Preference to sophomores. How does government, politics and science affect environmental policy? We examine environmental policy including the precautionary principal, acceptable risks, mathematical models, and costeffectiveness of regulation. You will learn how data is changing environmental regulation and how different administrations mold environmental policy in realtime. We examine the use of science and engineering, its media presentation and misrepresentation, and the effect of public scientific and technical literacy. You will learn how to participate in the process and effect change.
Terms: Aut

Units: 3

UG Reqs: GER:DBEngrAppSci, WAYAQR

Grading: Letter (ABCD/NP)
Instructors:
Libicki, S. (PI)
CHEMENG 70Q: Masters of Disaster
Preference to sophomores. For students interested in science, engineering, politics, and the law. Learn from past disasters to avoid future ones. How disasters can be tracked to failures in the design process. The roles of engineers, artisans, politicians, lawyers, and scientists in the design of products. Failure as rooted in oversight in adhering to the design process. Student teams analyze real disasters and design new products presumably free from the potential for disastrous outcomes.
Terms: not given this year, last offered Autumn 2016

Units: 3

UG Reqs: GER:DBEngrAppSci, WAYAQR

Grading: Letter (ABCD/NP)
CHEMENG 160: Soft Matter in Biomedical Devices, Microelectronics, and Everyday Life (BIOE 158, MATSCI 158)
The relationships between molecular structure, morphology, and the unique physical, chemical, and mechanical behavior of polymers and other types of soft matter are discussed. Topics include methods for preparing synthetic polymers and examination of how enthalpy and entropy determine conformation, solubility, mechanical behavior, microphase separation, crystallinity, glass transitions, elasticity, and linear viscoelasticity. Case studies covering polymers in biomedical devices and microelectronics will be covered. Recommended:
ENGR 50 and
Chem 31A or equivalent.
Terms: Win

Units: 4

UG Reqs: WAYAQR, WAYSMA

Grading: Letter or Credit/No Credit
CME 103: Introduction to Matrix Methods (EE 103)
Introduction to applied linear algebra with emphasis on applications. Vectors, norm, and angle; linear independence and orthonormal sets; applications to document analysis. Clustering and the kmeans algorithm. Matrices, left and right inverses, QR factorization. Leastsquares and model fitting, regularization and crossvalidation. Constrained and nonlinear leastsquares. Applications include timeseries prediction, tomography, optimal control, and portfolio optimization. Undergraduate students should enroll for 5 units, and graduate students should enroll for 3 units. Prerequisites:
MATH 51 or
CME 100, and basic knowledge of computing (
CS 106A is more than enough, and can be taken concurrently).
EE103/CME103 and
Math 104 cover complementary topics in applied linear algebra. The focus of EE103 is on a few linear algebra concepts, and many applications; the focus of
Math 104 is on algorithms and concepts.
Terms: Aut, Sum

Units: 35

UG Reqs: GER:DBMath, WAYAQR, WAYFR

Grading: Letter or Credit/No Credit
Instructors:
Jani, T. (PI)
;
Osgood, B. (PI)
;
Degleris, A. (TA)
;
Harvey, B. (TA)
;
Jani, T. (TA)
;
Landy, N. (TA)
;
Muppidi, S. (TA)
;
Shen, H. (TA)
;
Sowell, S. (TA)
CME 106: Introduction to Probability and Statistics for Engineers (ENGR 155C)
Probability: random variables, independence, and conditional probability; discrete and continuous distributions, moments, distributions of several random variables. Topics in mathematical statistics: random sampling, point estimation, confidence intervals, hypothesis testing, nonparametric tests, regression and correlation analyses; applications in engineering, industrial manufacturing, medicine, biology, and other fields. Prerequisite:
CME 100/ENGR154 or
MATH 51 or 52.
Terms: Win, Sum

Units: 4

UG Reqs: GER:DBMath, WAYAQR, WAYFR

Grading: Letter or Credit/No Credit
Instructors:
Khayms, V. (PI)
;
Earley, E. (TA)
;
Gong, E. (TA)
;
Klockiewicz, B. (TA)
;
Mantravadi, S. (TA)
;
Saad, N. (TA)
;
Trean, M. (TA)
;
Wang, A. (TA)
;
Zhang, V. (TA)
CME 108: Introduction to Scientific Computing (MATH 114)
Introduction to Scientific Computing Numerical computation for mathematical, computational, physical sciences and engineering: error analysis, floatingpoint arithmetic, nonlinear equations, numerical solution of systems of algebraic equations, banded matrices, least squares, unconstrained optimization, polynomial interpolation, numerical differentiation and integration, numerical solution of ordinary differential equations, truncation error, numerical stability for time dependent problems and stiffness. Implementation of numerical methods in MATLAB programming assignments. Prerequisites:
MATH 51, 52, 53; prior programming experience (MATLAB or other language at level of
CS 106A or higher).
Terms: Win, Sum

Units: 3

UG Reqs: GER:DBEngrAppSci, WAYAQR, WAYFR

Grading: Letter or Credit/No Credit
Filter Results: