2015-2016 2016-2017 2017-2018 2018-2019 2019-2020
Browse
by subject...
    Schedule
view...
 

21 - 30 of 170 results for: all courses

BIOE 42: Physical Biology

BIOE 42 is designed to introduce students to general engineering principles that have emerged from theory and experiments in biology. Topics covered will cover the scales from molecules to cells to organisms, including fundamental principles of entropy, diffusion, and continuum mechanics. These topics will link to several biological questions, including DNA organization, ligand binding, cytoskeletal mechanics, and the electromagnetic origin of nerve impulses. In all cases, students will learn to develop toy models that can explain quantitative measurements of the function of biological systems. Prerequisites: MATH 19, 20, 21 CHEM 31A, B (or 31X), PHYSICS 41; strongly recommended: CS 106A, CME 100 or MATH 51, and CME 106; or instructor approval.
Terms: Spr | Units: 4 | UG Reqs: WAY-AQR, WAY-SMA

BIOE 101: Systems Biology (BIOE 210)

Complex biological behaviors through the integration of computational modeling and molecular biology. Topics: reconstructing biological networks from high-throughput data and knowledge bases. Network properties. Computational modeling of network behaviors at the small and large scale. Using model predictions to guide an experimental program. Robustness, noise, and cellular variation. Prerequisites: CME 102; BIO 82, BIO 84; or consent of instructor.
Terms: Aut | Units: 3 | UG Reqs: WAY-AQR

BIOE 102: Physical Biology of Macromolecules

Principles of statistical physics, thermodynamics, and kinetics with applications to molecular biology. Topics include entropy, temperature, chemical forces, enzyme kinetics, free energy and its uses, self assembly, cooperative transitions in macromolecules, molecular machines, feedback, and accurate replication. Prerequisites: MATH 19, 20, 21; CHEM 31A, B (or 31X); strongly recommended: PHYSICS 41, CME 100 or MATH 51, and CME 106; or instructor approval.
Last offered: Winter 2019 | UG Reqs: WAY-AQR, WAY-SMA

BIOE 103: Systems Physiology and Design

Physiology of intact human tissues, organs, and organ systems in health and disease, and bioengineering tools used (or needed) to probe and model these physiological systems. Topics: Clinical physiology, network physiology and system design/plasticity, diseases and interventions (major syndromes, simulation, and treatment, instrumentation for intervention, stimulation, diagnosis, and prevention), and new technologies including tissue engineering and optogenetics.  Discussions of pathology of these systems in a clinical-case based format, with a view towards identifying unmet clinical needs.  Learning computational skills that not only enable simulation of these systems but also apply more broadly to biomedical data analysis. Prerequisites: CME 102; PHYSICS 41; BIO 82, BIO 84.
Terms: Spr | Units: 4 | UG Reqs: WAY-AQR, WAY-SMA

BIOE 103B: Systems Physiology and Design

*ONLINE Offering of BIOE 103. This pilot class, BIOE103B, is an entirely online offering with the same content, learning goals, and prerequisites as BIOE 103. Students attend class by watching videos and completing assignments remotely. Students may attend recitation and office hours in person, but cannot attend the BIOE103 in-person lecture due to room capacity restraints.* Physiology of intact human tissues, organs, and organ systems in health and disease, and bioengineering tools used (or needed) to probe and model these physiological systems. Topics: Clinical physiology, network physiology and system design/plasticity, diseases and interventions (major syndromes, simulation, and treatment, instrumentation for intervention, stimulation, diagnosis, and prevention), and new technologies including tissue engineering and optogenetics. Discussions of pathology of these systems in a clinical-case based format, with a view towards identifying unmet clinical needs. Learning computational skills that not only enable simulation of these systems but also apply more broadly to biomedical data analysis. Prerequisites: CME 102; PHYSICS 41; BIO 82, BIO 84. strongly recommended PHYSICS 43. Enrollment with Instructor approval
Terms: Spr | Units: 4 | UG Reqs: WAY-AQR, WAY-SMA

BIOE 158: Soft Matter in Biomedical Devices, Microelectronics, and Everyday Life (MATSCI 158)

The relationships between molecular structure, morphology, and the unique physical, chemical, and mechanical behavior of polymers and other types of soft matter are discussed. Topics include methods for preparing synthetic polymers and examination of how enthalpy and entropy determine conformation, solubility, mechanical behavior, microphase separation, crystallinity, glass transitions, elasticity, and linear viscoelasticity. Case studies covering polymers in biomedical devices and microelectronics will be covered. Recommended: ENGR 50 and Chem 31A or equivalent.
Terms: Win | Units: 4 | UG Reqs: WAY-AQR, WAY-SMA

BIOHOPK 14: Bio-logging and Bio-telemetry

Bio-logging is a rapidly growing discipline that includes diverse fields such as consumer electronics, medicine, and marine biology. The use of animal-attached digital tags is a powerful approach to study the movement and ecology of individuals over a wide range of temporal and spatial scales. This course is an introduction to bio-logging methods and analysis. Using whales as a model system, students will learn how use multi-sensor tags to study behavioral biomechanics.
Last offered: Spring 2018 | UG Reqs: WAY-AQR, WAY-SMA

BIOHOPK 174H: Experimental Design and Probability (BIOHOPK 274H)

(Graduate students register for 274H.) Variability is an integral part of biology. Introduction to probability and its use in designing experiments to address biological problems. Focus is on experimental design and the use of linear models in testing hypotheses (e.g., analysis of variance, regression). Students will use R to explore and analyze locally relevant biological datasets. No programming or statistical background is assumed. Prerequisite: consent of instructor.
Terms: Spr | Units: 3 | UG Reqs: GER: DB-NatSci, GER:DB-Math, WAY-AQR, WAY-FR
Instructors: Elahi, R. (PI)

BIOHOPK 175H: Marine Science and Conservation in a Changing World (BIOHOPK 275H)

Graduate students register for 275H. This hands-on, experiential course provides a broad foundation in marine science, and explores emerging opportunities for innovation in the study of life in the sea. Students are resident at Stanfords Hopkins Marine Station in Pacific Grove (90 miles south of main campus) where the diverse organisms and environments of Monterey Bay provide the focus for the course. Class meets daily with lectures, discussions, labs, and field work throughout the day. Three linked concentrations¿each 3 weeks long¿are taught sequentially to address (1) the extraordinary diversity of marine organisms and habitats, (2) the physiology and behavior of marine animals, and (3) the principles of marine ecology. Connecting these concentrations is a weekly seminar-based discussion of topics in marine conservation. This design permits deep concentration on each subject, and places emphasis on discussion, group dialog, individual exploration, and experiential learning. In the final week of the quarter, students complete an individual capstone project of their choosing. For the Biology major, this course fulfills the same requirements as BIO 47 and BIO 81. Satisfies WIM in Biology.
Terms: Spr | Units: 16 | UG Reqs: WAY-AQR, WAY-SMA

BIOHOPK 177H: Dynamics and Management of Marine Populations (BIOHOPK 277H)

(Graduate students register for 277H.) Course examines the ecological factors and processes that control natural and harvested marine populations. Course emphasizes mathematical models as tools to assess the dynamics of populations and to derive projections of their demographic fate under different management scenarios. Course objectives will be met by a combination of theoretical lectures, assigned readings and class discussions, case study analysis and interactive computer sessions.
Last offered: Winter 2018 | UG Reqs: WAY-AQR, WAY-FR | Repeatable for credit
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints