STATS 116: Theory of Probability
Probability spaces as models for phenomena with statistical regularity. Discrete spaces (binomial, hypergeometric, Poisson). Continuous spaces (normal, exponential) and densities. Random variables, expectation, independence, conditional probability. Introduction to the laws of large numbers and central limit theorem. Prerequisites:
MATH 52 and familiarity with infinite series, or equivalent.
Terms: Aut, Spr, Sum

Units: 4

UG Reqs: GER:DBMath, WAYAQR, WAYFR

Grading: Letter or Credit/No Credit
Instructors:
Kaluwa Devage, P. (PI)
;
Mohanty, P. (PI)
;
Siegmund, D. (PI)
...
more instructors for STATS 116 »
Instructors:
Kaluwa Devage, P. (PI)
;
Mohanty, P. (PI)
;
Siegmund, D. (PI)
;
Zhu, X. (PI)
;
Bhattacharya, S. (TA)
;
Bi, N. (TA)
;
Cao, S. (TA)
;
Li, S. (TA)
;
Misiakiewicz, T. (TA)
;
SUR, P. (TA)
;
Wu, H. (TA)
;
Xu, H. (TA)
STATS 141: Biostatistics (BIO 141)
Introductory statistical methods for biological data: describing data (numerical and graphical summaries); introduction to probability; and statistical inference (hypothesis tests and confidence intervals). Intermediate statistical methods: comparing groups (analysis of variance); analyzing associations (linear and logistic regression); and methods for categorical data (contingency tables and odds ratio). Course content integrated with statistical computing in R.
Terms: Aut

Units: 5

UG Reqs: GER:DBMath, WAYAQR

Grading: Letter or Credit/No Credit
Instructors:
Siegmund, D. (PI)
;
Hamidi, N. (TA)
;
Patterson, E. (TA)
...
more instructors for STATS 141 »
STATS 167: Probability: Ten Great Ideas About Chance (PHIL 166, PHIL 266, STATS 267)
Foundational approaches to thinking about chance in matters such as gambling, the law, and everyday affairs. Topics include: chance and decisions; the mathematics of chance; frequencies, symmetry, and chance; Bayes great idea; chance and psychology; misuses of chance; and harnessing chance. Emphasis is on the philosophical underpinnings and problems. Prerequisite: exposure to probability or a first course in statistics at the level of
STATS 60 or 116.
Terms: not given this year, last offered Spring 2016

Units: 4

UG Reqs: GER:DBMath, WAYAQR, WAYFR

Grading: Letter or Credit/No Credit
STATS 191: Introduction to Applied Statistics
Statistical tools for modern data analysis. Topics include regression and prediction, elements of the analysis of variance, bootstrap, and crossvalidation. Emphasis is on conceptual rather than theoretical understanding. Applications to social/biological sciences. Student assignments/projects require use of the software package R. Prerequisite: introductory statistical methods course. Recommended: 60, 110, or 141.
Terms: Win

Units: 34

UG Reqs: GER:DBMath, WAYAQR

Grading: Letter or Credit/No Credit
Instructors:
Taylor, J. (PI)
;
Seiler, B. (TA)
;
Sesia, M. (TA)
...
more instructors for STATS 191 »
THINK 3: Breaking Codes, Finding Patterns
Why are humans drawn to making and breaking codes? To what extent is finding patterns both an art and a science? Cryptography has been used for millennia for secure communications, and its counterpart, cryptanalysis, or code breaking, has been around for just slightly less time. In this course we will explore the history of cryptography and cryptanalysis including the Enigma code, Navajo windtalkers, early computer science and the invention of modern Bayesian inference. We will try our own hand at breaking codes using some basic statistical tools for which no prior experience is necessary. Finally, we will consider the topic of patterns more generally, raising such questions as why we impute meaning to patterns, such as Biblical codes, and why we assume a complexity within a pattern when it's not there, such as the coincidence of birthdays in a group.
Terms: Aut

Units: 4

UG Reqs: THINK, WAYAQR, WAYFR

Grading: Letter (ABCD/NP)
THINK 23: The Cancer Problem: Causes, Treatments, and Prevention
How has our approach to cancer been affected by clinical observations, scientific discoveries, social norms, politics, and economic interests? Approximately one in three Americans will develop invasive cancer during their lifetime; one in five Americans will die as a result of this disease. This course will expose you to multiple ways of approaching the cancer problem, including laboratory research, clinical trials, population studies, public health interventions, and health care economics. We will start with the 18th century discovery of the relationship between coal tar and cancer, and trace the role of scientific research in revealing the genetic basis of cancer. We will then discuss the development of new treatments for cancer as well as measures to screen for and prevent cancer, including the ongoing debate over tobacco control. Using cancer as a case study, you will learn important aspects of the scientific method including experimental design, data analysis, and the difference between correlation and causation. You will learn how science can be used and misused with regard to the public good. You will also learn about ways in which social, political, and economic forces shape our knowledge about and response to disease.
Terms: Spr

Units: 4

UG Reqs: THINK, WAYAQR, WAYSMA

Grading: Letter (ABCD/NP)
URBANST 124: Spatial Approaches to Social Science (ANTHRO 130D, ANTHRO 230D, POLISCI 241S)
This multidisciplinary course combines different approaches to how GIS and spatial tools can be applied in social science research. We take a collaborative, project oriented approach to bring together technical expertise and substantive applications from several social science disciplines. The course aims to integrate tools, methods, and current debates in social science research and will enable students to engage in critical spatial research and a multidisciplinary dialogue around geographic space.
Terms: not given this year, last offered Winter 2018

Units: 5

UG Reqs: WAYAQR, WAYSI

Grading: Letter or Credit/No Credit
Filter Results: