2015-2016 2016-2017 2017-2018 2018-2019 2019-2020
Browse
by subject...
    Schedule
view...
 

101 - 110 of 170 results for: all courses

ESS 164: Fundamentals of Geographic Information Science (GIS) (EARTHSYS 144)

Survey of geographic information including maps, satellite imagery, and census data, approaches to spatial data, and tools for integrating and examining spatially-explicit data. Emphasis is on fundamental concepts of geographic information science and associated technologies. Topics include geographic data structure, cartography, remotely sensed data, statistical analysis of geographic data, spatial analysis, map design, and geographic information system software. Computer lab assignments. All students are required to attend a weekly lab session.
Terms: Aut | Units: 3-4 | UG Reqs: GER: DB-NatSci, WAY-AQR

ESS 241: Remote Sensing of the Oceans (EARTHSYS 141, EARTHSYS 241, ESS 141, GEOPHYS 141)

How to observe and interpret physical and biological changes in the oceans using satellite technologies. Topics: principles of satellite remote sensing, classes of satellite remote sensors, converting radiometric data into biological and physical quantities, sensor calibration and validation, interpreting large-scale oceanographic features.
Terms: Win | Units: 3-4 | UG Reqs: GER: DB-NatSci, WAY-AQR

GEOLSCI 1: Introduction to Geology (EARTHSYS 11)

Why are earthquakes, volcanoes, and natural resources located at specific spots on the Earth surface? Why are there rolling hills to the west behind Stanford, and soaring granite walls to the east in Yosemite? What was the Earth like in the past, and what will it be like in the future? Lectures, hands-on laboratories, in-class activities, and one field trip will help you see the Earth through the eyes of a geologist. Topics include plate tectonics, the cycling and formation of different types of rocks, and how geologists use rocks to understand Earth's history.
Terms: Spr | Units: 5 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA

GEOLSCI 42: Landscapes and Tectonics of the San Francisco Bay Area (EARTH 42)

Active faulting and erosion in the Bay Area, and its effects upon landscapes. Earth science concepts and skills through investigation of the valley, mountain, and coastal areas around Stanford. Faulting associated with the San Andreas Fault, coastal processes along the San Mateo coast, uplift of the mountains by plate tectonic processes, and landsliding in urban and mountainous areas. Field excursions; student projects.
Terms: Aut | Units: 4 | UG Reqs: WAY-AQR, WAY-SMA

GEOLSCI 46Q: Environmental Impact of Energy Systems: What are the Risks? (EARTHSYS 46Q)

In order to reduce CO2 emissions and meet growing energy demands during the 21st Century, the world can expect to experience major shifts in the types and proportions of energy-producing systems. These decisions will depend on considerations of cost per energy unit, resource availability, and unique national policy needs. Less often considered is the environmental impact of the different energy producing systems: fossil fuels, nuclear, wind, solar, and other alternatives. One of the challenges has been not only to evaluate the environmental impact but also to develop a systematic basis for comparison of environmental impact among the energy sources. The course will consider fossil fuels (natural gas, petroleum and coal), nuclear power, wind and solar and consider the impact of resource extraction, refining and production, transmission and utilization for each energy source.
| UG Reqs: WAY-AQR

GEOLSCI 59N: Earthquake 9.0: The Heritage of Fukushima Daiichi 6 Years Later

We will consider the case for nuclear power as an energy source through the lens of the Fukushima disaster. Specific topics will include the cause of the earthquake and tsunami, the causes for the nuclear power plant failure, the mechanisms for the release of radioactivity at the time of the accident and today, and the ongoing human impact of this tragedy. In addition to the details of the accident and the release of radioactivity, class discussions and readings will explore the health and economic impacts of nuclear power and examine how the accident has affected the future prospects of nuclear power in Japan, the U.S., and around the world.
| UG Reqs: WAY-AQR

GEOLSCI 118X: Shaping the Future of the Bay Area (CEE 118X, CEE 218X, ESS 118X, ESS 218X, GEOLSCI 218X, GEOPHYS 118X, GEOPHYS 218X, POLISCI 224X, PUBLPOL 118X)

The complex urban problems affecting quality of life in the Bay Area, from housing affordability and transportation congestion to economic vitality and social justice, are already perceived by many to be intractable, and will likely be exacerbated by climate change and other emerging environmental and technological forces. Changing urban systems to improve the equity, resilience and sustainability of communities will require new collaborative methods of assessment, goal setting, and problem solving across governments, markets, and communities. It will also require academic institutions to develop new models of co-production of knowledge across research, education, and practice. This XYZ course series is designed to immerse students in co-production for social change. The course sequence covers scientific research and ethical reasoning, skillsets in data-driven and qualitative analysis, and practical experience working with local partners on urban challenges that can empower students to more »
The complex urban problems affecting quality of life in the Bay Area, from housing affordability and transportation congestion to economic vitality and social justice, are already perceived by many to be intractable, and will likely be exacerbated by climate change and other emerging environmental and technological forces. Changing urban systems to improve the equity, resilience and sustainability of communities will require new collaborative methods of assessment, goal setting, and problem solving across governments, markets, and communities. It will also require academic institutions to develop new models of co-production of knowledge across research, education, and practice. This XYZ course series is designed to immerse students in co-production for social change. The course sequence covers scientific research and ethical reasoning, skillsets in data-driven and qualitative analysis, and practical experience working with local partners on urban challenges that can empower students to drive responsible systems change in their future careers. The Autumn (X) course is specifically focused on concepts and skills, and completion is a prerequisite for participation in the Winter (Y) and/or Spring (Z) practicum quarters, which engage teams in real-world projects with Bay Area local governments or community groups. X is composed of four modules: (A) participation in two weekly classes which prominently feature experts in research and practice related to urban systems; (B) reading and writing assignments designed to deepen thinking on class topics; (C) fundamental data analysis skills, particularly focused on Excel and ArcGIS, taught in lab sessions through basic exercises; (D) advanced data analysis skills, particularly focused on geocomputation in R, taught through longer and more intensive assignments. X can be taken for 3 units (ABC), 4 units (ACD), or 5 units (ABCD). Open to undergraduate and graduate students in any major. For more information, visit http://bay.stanford.edu.
Terms: Aut | Units: 3-5 | UG Reqs: WAY-AQR, WAY-SI

GEOPHYS 20N: Predicting Volcanic Eruptions

The physics and chemistry of volcanic processes and modern methods of volcano monitoring. Volcanoes as manifestations of the Earth's internal energy and hazards to society. How earth scientists better forecast eruptive activity by monitoring seismic activity, bulging of the ground surface, and the discharge of volcanic gases, and by studying deposits from past eruptions. Focus is on the interface between scientists and policy makers and the challenges of decision making with incomplete information. Field trip to Mt. St. Helens, site of the 1980 eruption.
Terms: Spr | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA

GEOPHYS 90: Earthquakes and Volcanoes (EARTHSYS 113)

Is the "Big One" overdue in California? What kind of damage would that cause? What can we do to reduce the impact of such hazards in urban environments? Does "fracking" cause earthquakes and are we at risk? Is the United States vulnerable to a giant tsunami? The geologic record contains evidence of volcanic super eruptions throughout Earth's history. What causes these gigantic explosive eruptions, and can they be predicted in the future? This course will address these and related issues. For non-majors and potential Earth scientists. No prerequisites. More information at: https://stanford.box.com/s/zr8ar28efmuo5wtlj6gj2jbxle76r4lu
Terms: Spr | Units: 3 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA

GEOPHYS 104: The Water Course (EARTHSYS 104, EARTHSYS 204, GEOPHYS 204)

The Central Valley of California provides a third of the produce grown in the U.S., but recent droughts and increasing demand have raised concerns about both food and water security. The pathway that water takes from rainfall to the irrigation of fields or household taps (¿the water course¿) determines the quantity and quality of the available water. Working with various data sources (measurements made on the ground, in wells, and from satellites) allows us to model the water budget in the valley and explore the recent impacts on freshwater supplies.
Terms: Spr | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints