2014-2015 2015-2016 2016-2017 2017-2018 2018-2019
by subject...

41 - 50 of 295 results for: ME

ME 120: History and Philosophy of Design

Major schools of 19th- and 20th-century design (Arts and Crafts movement, Bauhaus, Industrial Design, and postmodernism) are analyzed in terms of their continuing cultural relevance. The relation of design to art, technology, and politics; readings from principal theorists, practitioners, and critics; recent controversies in industrial and graphic design, architecture, and urbanism. Enrollment limited to 65.
Terms: Spr | Units: 3 | Repeatable for credit | Grading: Letter or Credit/No Credit

ME 123: Computational Engineering

The design of wind turbines, biomedical devices, jet engines, electronic units, and almost every other engineering system, require the analysis of its flow and thermal characteristics to ensure optimal performance and safety. The continuing growth ofcomputer power and the emergence of general-purpose engineering software has fostered the use of computational analysis as a complement to experimental testing. Virtual prototyping is a staple of modern engineering practice. This course is an introduction to Computational Engineering using commercial analysis codes, covering both theory and applications. Assuming limited knowledge of computational methods, the course starts with introductory training on the software, using a nseries of lectures and hands-on tutorials. We utilize the ANSYS software suite, which is used across a variety of engineering fields. Herein, the emphasis is on geometry modeling, mesh generation, solution strategy and post-processing for diverse applications. Using classical flow/thermal problems, the course develops the essential concepts of Verification and Validation for engineering simulations, nproviding the basis for assessing the accuracy of the results. Advanced concepts such as the use of turbulence models, user programming and automation for design are also introduced. The course is concluded by a project, in which the students apply the software to solve a industry-inspired problem.
Terms: Spr | Units: 4 | Grading: Letter or Credit/No Credit

ME 124: Visual Expressions

Visual Expressions: Visual Expressions explores the practice of art in any of a number of areas directly concerned with utility or communication. It is a hands-on exploration of the grammar of imagery through the study of the elements (line, shape, space, texture, color) and principles (balance, unity, contrast, proportion, rhythm) of visual design.
Terms: Spr | Units: 3 | UG Reqs: WAY-CE | Grading: Letter (ABCD/NP)
Instructors: Edmark, J. (PI)

ME 125: Visual Frontiers

Visual Frontiers: A survey across contemporary communications platforms. Students will juxtapose emerging tools, services, and applications with historic means of communications and produce works that bridge the past with the future. Fundamentals of visual communications will be applied to familiar platforms, enabling students to enhance their profiles, visualize information, and make convincing presentations.
Terms: Spr | Units: 3 | UG Reqs: WAY-CE | Grading: Letter (ABCD/NP)
Instructors: Fenton, P. (PI)

ME 131A: Heat Transfer

The principles of heat transfer by conduction, convection, and radiation with examples from the engineering of practical devices and systems. Topics include transient and steady conduction, conduction by extended surfaces, boundary layer theory for forced and natural convection, boiling, heat exchangers, and graybody radiative exchange. Prerequisites: 70, ENGR 30. Recommended: intermediate calculus, ordinary differential equations.
Terms: Aut, Win | Units: 3-5 | UG Reqs: GER:DB-EngrAppSci | Grading: Letter or Credit/No Credit

ME 131B: Fluid Mechanics: Compressible Flow and Turbomachinery

Engineering applications involving compressible flow: aircraft and rocket propulsion, power generation; application of mass, momentum, energy and entropy balance to compressible flows; variable area isentropic flow, normal shock waves, adiabatic flow with friction, flow with heat addition. Operation of flow systems: the propulsion system. Turbomachinery: pumps, compressors, turbines. Angular momentum analysis of turbomachine performance, centrifugal and axial flow machines, effect of blade geometry, dimensionless performance of turbomachines; hydraulic turbines; steam turbines; wind turbines. Compressible flow turbomachinery: the aircraft engine. Prerequisites: 70, ENGR 30.
Terms: Win, Spr | Units: 4 | UG Reqs: GER:DB-EngrAppSci | Grading: Letter or Credit/No Credit

ME 137: 3D Printing for Non-Technical Innovators (ME 237)

3D Printing is a method of creation that requires only some basic computer skills and a few rules of thumb. This class will allow students to discover for themselves the potential and limitations of 3D Printing through a build intensive design project. This course is an excellent option for anyone who ever wanted to prototype an invention, create a work of art, customize a product or just make something cool -- and yet lacked the skills or a fully equipped workshop. Students may enroll for 1 unit to attend the lectures or 3 units for the complete project course. No prior technical knowledge needed.nNote: Course material is targeted toward non-ME Design and non-PD majors. An application is required for the 3-unit course option. Please complete the online application by Friday, March 25th. The application is available on the course website: web.stanford.edu/class/me137
Terms: not given this year | Units: 1-3 | Grading: Satisfactory/No Credit

ME 139: Educating Young STEM Thinkers (EDUC 139, EDUC 239, ME 231)

The course introduces students to the design thinking process, the national conversations about the future of STEM careers, and opportunities to work with middle school students and K-12 teachers in STEM-based after-school activities and intercession camps. The course is both theory and practice focused. The purpose is twofold; to provide reflection and mentoring opportunities for students to learn about pathways to STEM careers and to introduce mentoring opportunities with young STEM thinkers.
Terms: not given this year | Units: 3-5 | Repeatable for credit | Grading: Letter or Credit/No Credit

ME 140: Advanced Thermal Systems

Capstone course. Thermal analysis and engineering emphasizing integrating heat transfer, fluid mechanics, and thermodynamics into a unified approach to treating complex systems. Mixtures, humidity, chemical and phase equilibrium, and availability. Labs apply principles through hands-on experience with a turbojet engine, PEM fuel cell, and hybrid solid/oxygen rocket motor. Use of MATLAB as a computational tool. Prerequisites: ENGR 30, ME 70, and 131A,B.
Terms: Spr | Units: 5 | UG Reqs: GER:DB-EngrAppSci | Grading: Letter (ABCD/NP)

ME 141: Alternative Energy Systems

Capstone course. Energy analysis, diagnostics and engineering of selected alternative energy systems with an integrated thermodynamic, heat transfer, and fluid mechanic approach. Mixtures, transport, reactions, electrochemical processes and photovoltaic effects. Labs apply principles through hands-on experience with selected alternative energy systems and their components. Use of MATLAB as an analysis tool.
Terms: Spr | Units: 5 | Grading: Letter (ABCD/NP)
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
updating results...
UG Requirements (GERs)
updating results...
updating results...
updating results...
© Stanford University | Terms of Use | Copyright Complaints