2015-2016 2016-2017 2017-2018 2018-2019 2019-2020
by subject...

21 - 30 of 64 results for: ME

ME 195A: Food, Design & Technology

Food has been a great source of inspiration for many entrepreneurs and designers. In Silicon Valley, the number of food design solutions has increased tremendously. The goal of this course is to expose students to the landscape of food innovation and design. We will look at food in two different lenses--design and technology. In the first half of the course, students will learn the design thinking process through food. In the next half, students will explore various applications of the design thinking methodology in the real world. Students will do so by actively asking questions, participating in discussions, and engaging in hands-on activities led by industry leaders and experts. Weekly readings will be assigned.
Terms: Aut, Win, Spr | Units: 1

ME 203: Design and Manufacturing

Integrated experience involving need finding, product definition, conceptual design, detail design, prototype manufacture, public presentation of outcomes, archiving and intrepreting the product realization process and its results. Presents an overview of manufacturing processes crucial to the practice of design.
Terms: Aut, Win, Spr | Units: 4
Instructors: Beach, D. (PI)

ME 208: Patent Law and Strategy for Innovators and Entrepreneurs (MS&E 278)

This course teaches the essentials for a startup to build a valuable patent portfolio and avoid a patent infringement lawsuit. Jeffrey Schox, who is the top recommended patent attorney for Y Combinator, built the patent portfolio for Twilio (IPO), Cruise ($1B acquisition), and 300 startups that have collectively raised over $3B in venture capital. This course is equally applicable to EE, CS, and Bioengineering students. For those students who are interested in a career in Patent Law, please note that this course is a prerequisite for ME238 Patent Prosecution.
Terms: Aut | Units: 2-3
Instructors: Schox, J. (PI)

ME 216A: Advanced Product Design: Needfinding

Human needs that lead to the conceptualization of future products, environments, systems, and services. Field work in public and private settings; appraisal of personal values; readings on social ethnographic issues; and needfinding for a corporate client. Emphasis is on developing the flexible thinking skills that enable the designer to navigate the future. Prerequisites for undergraduates: ME115A, ME115B and ME203, or consent of the instructor.
Terms: Aut | Units: 3-4

ME 218A: Smart Product Design Fundamentals

Lecture/Lab. Team design project series on programmable electromechanical systems design. Topics: transistors as switches, basic digital and analog circuits, operational amplifiers, comparators, software design, state machines, programming in C. Lab fee. Limited enrollment.
Terms: Aut | Units: 4-5
Instructors: Carryer, E. (PI)

ME 218D: Smart Product Design: Projects

Lecture/lab. Industrially sponsored project is the culmination of the Smart Product Design sequence. Student teams take on an industrial project requiring application and extension of knowledge gained in the prior three quarters, including prototyping of a final solution with hardware, software, and professional documentation and presentation. Lectures extend the students' knowledge of electronic and software design, and electronic manufacturing techniques. Topics: chip level design of microprocessor systems, real time operating systems, alternate microprocessor architectures, and PCB layout and fabrication. Prerequisite: 218C.
Terms: Aut | Units: 3-4
Instructors: Carryer, E. (PI)

ME 219: The Magic of Materials and Manufacturing

ME219 is intended for students who anticipate imagining and creating new products and who are interested in how to make the leap from making one to making many. Through a combination of lectures, weekly factory field trips, and multimedia presentations the class will help students acquire foundational professional experience with materials and materiality, manufacturing processes, and the business systems inside factories. We hope to instill in students a deep and life-long love of materials and manufacturing in order to make great products and tell a good story about each one. This class assumes basic knowledge of materials and manufacturing processes which result from taking ENGR 50, ME203, or equivalent course or life experience.
Terms: Aut | Units: 3

ME 243: Designing Emotion- for Reactive Car Interfaces

Students learn to define emotions as physiology, expression, and private experience using the automobile and shared space. Explores the meaning and impact of personal and user car experience. Reflective, narrative, and socio-cognitive techniques serve to make sense of mobility experiences; replay memories; examine engagement; understand user interviews. This course celebrates car fascination and leads the student through finding and telling the car experience through discussion, ethnographic research, interviews, and diverse individual and collaborative narrative methods-verbal, non-verbal, and in car experiences. Methods draw from socio-cognitive psychology, design thinking, and fine art, and are applied to the car or mobility experience. Course culminates in a final individual narrative presentation and group project demonstration. Class size limited to 18.
Terms: Aut | Units: 1-3 | Repeatable for credit
Instructors: Karanian, B. (PI)

ME 244: Mechanotransduction in Cells and Tissues (BIOE 283, BIOPHYS 244)

Mechanical cues play a critical role in development, normal functioning of cells and tissues, and various diseases. This course will cover what is known about cellular mechanotransduction, or the processes by which living cells sense and respond to physical cues such as physiological forces or mechanical properties of the tissue microenvironment. Experimental techniques and current areas of active investigation will be highlighted. This class is for graduate students only.
Terms: Aut | Units: 3

ME 267: Ethics and Equity in Transportation Systems

Transportation is a crucial element of human life. It enables communication with others, provides access to employment / economic opportunity, and transports goods upon which we depend. However, transportation also generates negative impacts: pollution, noise, energy consumption and risk to human life. Because of its enormous capability to affect our lives, transportation is one of the most highly regulated businesses in the world. These regulations are designed to promote social welfare, improve access, and protect vulnerable populations. This course examines the origins and impacts of transportation policy and regulation: who benefits, who bears the cost, and how social and individual objectives are achieved.
Terms: Aut | Units: 3 | UG Reqs: WAY-ER
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
updating results...
UG Requirements (GERs)
updating results...
updating results...
updating results...
© Stanford University | Terms of Use | Copyright Complaints