2015-2016 2016-2017 2017-2018 2018-2019 2019-2020
Browse
by subject...
    Schedule
view...
 

11 - 20 of 64 results for: ME

ME 110B: Digital Design Principles and Applications

Building upon foundation design principles, project-based individual / group exploration and critique facilitates a self-guided learning process, where analytical problem-solving approaches are cultivated through real-time implementation in digital tools. A series of diverse projects are brought together in conjunction with related student project portfolio development. Class Prerequisites: Students must have completed ME110 with high levels of understanding, engagement. May be repeat for credit
Terms: Aut, Win, Spr | Units: 2 | Repeatable for credit
Instructors: Scott, W. (PI)

ME 115A: Introduction to Human Values in Design

An intensive project-based class that introduces the central philosophy of the product design program. Students learn how to use the lens of human needs to innovate at the intersection of technical factors (feasibility), business factors (viability), and human values (desirability). Students work toward mastery of the human-centered design methodology through several real-world, team-based projects. Students gain fluency in designing solutions ranging from physical products, to digital interfaces, to services and experiences. Students are immersed in building their individual and team capacities around core design process and methods, and emerge with a strong foundation in needfinding, synthesis, ideation, rapid prototyping, user testing, iteration, and storytelling.
Terms: Aut | Units: 3

ME 128: Computer-Aided Product Realization

Students will continue to build understanding of Product Realization processes and techniques concentrating on Computer Numerical Control (CNC) machines, materials, tools, and workholding. Students will gain an understanding of CNC in modern manufacturing and alternative methods and tools used in industry. Students will contribute to their professional portfolio by including projects done in class, both individually and in teams. Limited enrollment. Prerequisite: ME 103 and consent of instructor.
Terms: Aut, Win, Spr | Units: 3-4

ME 131: Heat Transfer

The principles of heat transfer by conduction, convection, and radiation with examples from the engineering of practical devices and systems. Topics include transient and steady conduction, conduction by extended surfaces, boundary layer theory for forced and natural convection, boiling, heat exchangers, and graybody radiative exchange. Prerequisites: ME70, ME30 (formerly listed at ENGR30). Recommended: intermediate calculus, ordinary differential equations.nnThis course was formerly ME131A. Students who have already taken ME131A should not enroll in this course.
Terms: Aut | Units: 4 | UG Reqs: GER:DB-EngrAppSci

ME 132: Intermediate Thermodynamics

A second course in engineering thermodynamics. Review of first and second laws, and the state principle. Extension of property treatment to mixtures. Chemical thermodynamics including chemical equilibrium, combustion, and understanding of chemical potential as a driving force. Elementary electrochemical thermodynamics. Coursework includes both theoretical and applied aspects. Applications include modeling and experiments of propulsion systems (turbojet) and electricity generation (PEM fuel cell). Matlab is used for quantitative modeling of complex energy systems with real properties and performance metrics. Prerequisites: ME30 required, ME70 suggested, ME131 desirable.
Terms: Aut | Units: 4
Instructors: Edwards, C. (PI)

ME 161: Dynamic Systems, Vibrations and Control

Modeling, analysis, and measurement of mechanical and electromechanical dynamic systems. Closed form solutions of ordinary differential equations governing the behavior of single and multiple-degree-of-freedom systems. Stability, forcing, resonance, and control system design. Prerequisites: Ordinary differential equations ( CME 102 or MATH 53), linear algebra ( CME 104 or MATH 53) and dynamics (E 15) are recommended.
Terms: Aut | Units: 3 | UG Reqs: GER:DB-EngrAppSci
Instructors: Towles, J. (PI)

ME 170A: Mechanical Engineering Design- Integrating Context with Engineering

First course of two-quarter capstone sequence. Working in project teams, design and develop an engineering system addressing a real-world problem in theme area of pressing societal need. Learn and utilize industry development process: first quarter focuses on establishing requirements and narrowing to top concept. Second quarter emphasizes implementation and testing. Learn and apply professional communication skills, assess ethics. Students must also enroll in ME170b; completion of 170b required to earn grade in 170a. Course sequence fulfills ME WIM requirement. Prerequisites: ENGR15, ME80, ME104 (112), ME131, ME123/151. (Cardinal Course certified by the Haas Center)
Terms: Aut | Units: 4

ME 171E: Aerial Robot Design (AA 248E, ME 271E)

(Graduate students only enroll in ME 271e or AA 248e) A result-focused introduction to the design of winged aerial robots capable of vertical takeoff and landing for a wide range of applications. Students will learn how to ideate specific aerial robot applications and make an appropriate design from scratch that meets mission requirements. Design skill outcomes include: robot need identification based on mission requirements; system ideation and sizing; making design performance tradeoffs; aerodynamic wing design; CAD assembly; communicating the design and its application. The hands-on lab experience includes prototyping the aerial robot mission, to inform system design, by building and flying quadcopters. Prerequisites: intro level undergraduate fluid mechanics or aerodynamics (e.g. ME 70 or AA 100) or equivalent; Intro level undergraduate electronics or Arduino experience; MATLAB experience.
Terms: Aut | Units: 4
Instructors: Lentink, D. (PI)

ME 191: Engineering Problems and Experimental Investigation

Directed study and research for undergraduates on a subject of mutual interest to student and staff member. Student must find faculty sponsor and have approval of adviser.
Terms: Aut, Win, Spr, Sum | Units: 1-5 | Repeatable for credit

ME 191H: Honors Research

Student must find faculty honors adviser and apply for admission to the honors program.nn (Staff)
Terms: Aut, Win, Spr, Sum | Units: 1-5 | Repeatable for credit
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints