## PHYSICS 17: Black Holes and Extreme Astrophysics

Black holes represent an extreme frontier of astrophysics. Course will explore the most fundamental and universal force -- gravity -- and how it controls the fate of astrophysical objects, leading in some cases to black holes. How we discover and determine the properties of black holes and their environment. How black holes and their event horizons are used to guide thinking about mysterious phenomena such as Hawking radiation, wormholes, and quantum entanglement. How black holes generate gravitational waves and powerful jets of particles and radiation. Other extreme objects such as pulsars. Relevant physics, including relativity, is introduced and treated at the algebraic level. No prior physics or calculus is required, although some deep thinking about space, time, and matter is important in working through assigned problems.

Terms: Spr
| Units: 3
| UG Reqs: GER: DB-NatSci, WAY-SMA

Instructors:
Abel, T. (PI)

## PHYSICS 18N: Frontiers in Theoretical Physics and Cosmology

Preference to freshmen. The course will begin with a description of the current standard models of gravitation, cosmology, and elementary particle physics. We will then focus on frontiers of current understanding including investigations of very early universe cosmology, string theory, and the physics of black holes.

Terms: Win
| Units: 3
| UG Reqs: GER: DB-NatSci, WAY-SMA

Instructors:
Dimopoulos, S. (PI)

## PHYSICS 19: How Things Work: An Introduction to Physics

Introduction to the principles of physics through familiar objects and phenomena, including airplanes, cameras, computers, engines, refrigerators, lightning, radio, microwave ovens, and fluorescent lights. Estimates of real quantities from simple calculations. Prerequisite: high school algebra and trigonometry.

Last offered: Autumn 2014
| UG Reqs: GER: DB-NatSci, WAY-SMA

## PHYSICS 21: Mechanics, Fluids, and Heat

How are the motions of objects and the behavior of fluids and gases determined by the laws of physics? Students learn to describe the motion of objects (kinematics) and understand why objects move as they do (dynamics). Emphasis on how Newton's three laws of motion are applied to solids, liquids, and gases to describe phenomena as diverse as spinning gymnasts, blood flow, and sound waves. Understanding many-particle systems requires connecting macroscopic properties (e.g., temperature and pressure) to microscopic dynamics (collisions of particles). Laws of thermodynamics provide understanding of real-world phenomena such as energy conversion and performance limits of heat engines. Everyday examples are analyzed using tools of algebra and trigonometry. Problem-solving skills are developed, including verifying that derived results satisfy criteria for correctness, such as dimensional consistency and expected behavior in limiting cases. Physical understanding fostered by peer interaction
more »

How are the motions of objects and the behavior of fluids and gases determined by the laws of physics? Students learn to describe the motion of objects (kinematics) and understand why objects move as they do (dynamics). Emphasis on how Newton's three laws of motion are applied to solids, liquids, and gases to describe phenomena as diverse as spinning gymnasts, blood flow, and sound waves. Understanding many-particle systems requires connecting macroscopic properties (e.g., temperature and pressure) to microscopic dynamics (collisions of particles). Laws of thermodynamics provide understanding of real-world phenomena such as energy conversion and performance limits of heat engines. Everyday examples are analyzed using tools of algebra and trigonometry. Problem-solving skills are developed, including verifying that derived results satisfy criteria for correctness, such as dimensional consistency and expected behavior in limiting cases. Physical understanding fostered by peer interaction and demonstrations in lecture, and interactive group problem solving in discussion sections. In order to register for this class students must EITHER have already taken an introductory Physics class (20, 40, or 60 sequence) or have taken the Physics Placement Diagnostic at
https://physics.stanford.edu/academics/undergraduate-students/placement-diagnostic. Prerequisite: high school algebra and trigonometry; calculus not required.

Terms: Aut
| Units: 4
| UG Reqs: GER: DB-NatSci, WAY-SMA

Instructors:
Nanavati, C. (PI)
;
Gruenke, R. (TA)
;
Multani, K. (TA)
...
more instructors for PHYSICS 21 »

Instructors:
Nanavati, C. (PI)
;
Gruenke, R. (TA)
;
Multani, K. (TA)
;
Timcheck, J. (TA)
;
Zawada, A. (TA)

## PHYSICS 21S: Mechanics and Heat with Laboratory

How are the motions of objects and the behavior of fluids and gases determined by the laws of physics? Students learn to describe the motion of objects (kinematics) and understand why objects move as they do (dynamics). Emphasis on how Newton's three laws of motion are applied to solids, liquids, and gases to describe phenomena as diverse as spinning gymnasts, blood flow, and sound waves. Understanding many-particle systems requires connecting macroscopic properties (e.g., temperature and pressure) to microscopic dynamics (collisions of particles). Laws of thermodynamics provide understanding of real-world phenomena such as energy conversion and performance limits of heat engines. Everyday examples are analyzed using tools of algebra and trigonometry. Problem-solving skills are developed, including verifying that derived results satisfy criteria for correctness, such as dimensional consistency and expected behavior in limiting cases. Physical understanding fostered by peer interaction and demonstrations in lecture, and interactive group problem solving in discussion sections. Labs are an integrated part of the summer course. Prerequisite: high school algebra and trigonometry; calculus not required.

Terms: Sum
| Units: 5
| UG Reqs: GER: DB-NatSci, WAY-SMA

Instructors:
Hazelton, R. (PI)

## PHYSICS 23: Electricity, Magnetism, and Optics

How are electric and magnetic fields generated by static and moving charges, and what are their applications? How is light related to electromagnetic waves? Students learn to represent and analyze electric and magnetic fields to understand electric circuits, motors, and generators. The wave nature of light is used to explain interference, diffraction, and polarization phenomena. Geometric optics is employed to understand how lenses and mirrors form images. These descriptions are combined to understand the workings and limitations of optical systems such as the eye, corrective vision, cameras, telescopes, and microscopes. Discussions based on the language of algebra and trigonometry. Physical understanding fostered by peer interaction and demonstrations in lecture, and interactive group problem solving in discussion sections. Prerequisite:
PHYSICS 21 or
PHYSICS 21S.

Terms: Win
| Units: 4
| UG Reqs: GER: DB-NatSci, WAY-SMA

Instructors:
Fox, J. (PI)

## PHYSICS 23S: Electricity and Optics with Laboratory

How are electric and magnetic fields generated by static and moving charges, and what are their applications? How is light related to electromagnetic waves? Students learn to represent and analyze electric and magnetic fields to understand electric circuits, motors, and generators. The wave nature of light is used to explain interference, diffraction, and polarization phenomena. Geometric optics is employed to understand how lenses and mirrors form images. These descriptions are combined to understand the workings and limitations of optical systems such as the eye, corrective vision, cameras, telescopes, and microscopes. Discussions based on the language of algebra and trigonometry. Physical understanding fostered by peer interaction and demonstrations in lecture, and interactive group problem solving in discussion sections. Labs are an integrated part of the summer courses. Prerequisite:
PHYSICS 21 or
PHYSICS 21S.

Terms: Sum
| Units: 5
| UG Reqs: GER: DB-NatSci, WAY-SMA

Instructors:
Devin, J. (PI)

## PHYSICS 25: Modern Physics

How do the discoveries since the dawn of the 20th century impact our understanding of 21st-century physics? This course introduces the foundations of modern physics: Einstein's theory of special relativity and quantum mechanics. Combining the language of physics with tools from algebra and trigonometry, students gain insights into how the universe works on both the smallest and largest scales. Topics may include atomic, molecular, and laser physics; semiconductors; elementary particles and the fundamental forces; nuclear physics (fission, fusion, and radioactivity); astrophysics and cosmology (the contents and evolution of the universe). Emphasis on applications of modern physics in everyday life, progress made in our understanding of the universe, and open questions that are the subject of active research. Physical understanding fostered by peer interaction and demonstrations in lecture, and interactive group problem solving in discussion sections. Prerequisite:
PHYSICS 23 or
PHYSICS 23S.

Terms: Spr
| Units: 4
| UG Reqs: GER: DB-NatSci, WAY-SMA

Instructors:
Irwin, K. (PI)

## PHYSICS 41: Mechanics

How are motions of objects in the physical world determined by laws of physics? Students learn to describe the motion of objects (kinematics) and then understand why motions have the form they do (dynamics). Emphasis on how the important physical principles in mechanics, such as conservation of momentum and energy for translational and rotational motion, follow from just three laws of nature: Newton's laws of motion. Distinction made between fundamental laws of nature and empirical rules that are useful approximations for more complex physics. Problems drawn from examples of mechanics in everyday life. Skills developed in verifying that derived results satisfy criteria for correctness, such as dimensional consistency and expected behavior in limiting cases. Discussions based on language of mathematics, particularly vector representations and operations, and calculus. Physical understanding fostered by peer interaction and demonstrations in lecture, and discussion sections based on inte
more »

How are motions of objects in the physical world determined by laws of physics? Students learn to describe the motion of objects (kinematics) and then understand why motions have the form they do (dynamics). Emphasis on how the important physical principles in mechanics, such as conservation of momentum and energy for translational and rotational motion, follow from just three laws of nature: Newton's laws of motion. Distinction made between fundamental laws of nature and empirical rules that are useful approximations for more complex physics. Problems drawn from examples of mechanics in everyday life. Skills developed in verifying that derived results satisfy criteria for correctness, such as dimensional consistency and expected behavior in limiting cases. Discussions based on language of mathematics, particularly vector representations and operations, and calculus. Physical understanding fostered by peer interaction and demonstrations in lecture, and discussion sections based on interactive group problem solving. In order to register for this class students must EITHER have already taken an introductory Physics class (20, 40, or 60 sequence) or have taken the Physics Placement Diagnostic at
https://physics.stanford.edu/academics/undergraduate-students/placement-diagnostic. Prerequisite: High school physics and
MATH 20 or
MATH 51 or
CME 100 or equivalent. Minimum co-requisite:
MATH 21 or equivalent.

Terms: Win
| Units: 4
| UG Reqs: GER: DB-NatSci, WAY-SMA

Instructors:
Lee, Y. (PI)

## PHYSICS 41E: Mechanics, Concepts, Calculations, and Context

Physics 41E (
Physics 41 Extended) is an 5-unit version of
Physics 41 (4 units) for students with little or no high school physics or calculus. Course topics and mathematical complexity are identical to
Physics 41, but the extra classroom time allows students to engage with concepts, develop problem solving skills, and become fluent in mathematical tools that include vector representations and operations, and calculus. The course will use problems drawn from everyday life to explore important physical principles in mechanics, such as Newton's Laws of motion, equations of kinematics, and conservation of energy and momentum. Prerequisite:
Math 19 or equivalent; Co-requisite:
Math 20 or equivalent. In order to register for this class students must EITHER have already taken an introductory Physics class (20, 40, or 60 sequence) or have taken the Physics Placement Diagnostic at
https://physics.stanford.edu/academics/undergraduate-students/placement-diagnostic. Enrollment is via permission number which can be obtained by filling in the application at
https://stanforduniversity.qualtrics.com/jfe/form/SV_6gpr3SkM76WNDVP.

Terms: Win
| Units: 5
| UG Reqs: WAY-SMA

Instructors:
Church, S. (PI)
;
Wieman, C. (PI)

Filter Results: