2016-2017 2017-2018 2018-2019 2019-2020 2020-2021
Browse
by subject...
    Schedule
view...
 
  COVID-19 Scheduling Updates!
Due to recent announcements about Autumn Quarter (see the President's update), please expect ongoing changes to the class schedule.

261 - 270 of 290 results for: all courses

PHYSICS 65: Quantum and Thermal Physics

(Third in a three-part advanced freshman physics series: PHYSICS 61, PHYSICS 63, PHYSICS 65.) This course introduces the foundations of quantum and thermodynamics for students with a strong high school mathematics and physics background, who are contemplating a major in Physics or Engineering Physics, or are interested in a rigorous treatment of physics. Topics related to quantum mechanics include: atoms, electrons, nuclei. Experimental evidence for physics that is not explained by classical mechanics and E&M. Quantization of light, Planck's constant. Photoelectric effect, Compton and Bragg scattering. Bohr model, atomic spectra. Matter waves, wave packets, interference. Fourier analysis and transforms, Heisenberg uncertainty relationships. Particle-in-a-box, simple harmonic oscillator, barrier penetration, tunneling. Topics related to thermodynamics: limitations of classical mechanics in describing systems with a very large number of particles. Ideal gas, equipartition, heat capacity, definition of temperature, entropy. Brief introduction to kinetic theory and statistical mechanics. Maxwell speed distribution, ideal gas in a box. Laws of thermodynamics. Cycles, heat engines, free energy.nPrerequisites: PHYSICS 61 & PHYSICS 63.
Terms: Sum | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-FR, WAY-SMA
Instructors: Gratta, G. (PI)

PHYSICS 70: Foundations of Modern Physics

Required for Physics or Engineering Physics majors who completed the PHYSICS 40 series. Introduction to special relativity: reference frames, Michelson-Morley experiment. Postulates of relativity, simultaneity, time dilation. Length contraction, the Lorentz transformation, causality. Doppler effect. Relativistic mechanics and mass, energy, momentum relations. Introduction to quantum physics: atoms, electrons, nuclei. Quantization of light, Planck constant. Photoelectric effect, Compton and Bragg scattering. Bohr model, atomic spectra. Matter waves, wave packets, interference. Fourier analysis and transforms, Heisenberg uncertainty relationships. Schrödinger equation, eigenfunctions and eigenvalues. Particle-in-a-box, simple harmonic oscillator, barrier penetration, tunneling, WKB and approximate solutions. Time-dependent and multi-dimensional solution concepts. Coulomb potential and hydrogen atom structure. Prerequisites: PHYSICS 41, PHYSICS 43. Pre or corequisite: PHYSICS 45. Recommended: prior or concurrent registration in MATH 53.
Terms: Aut | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA

PHYSICS 83N: Physics in the 21st Century

Preference to freshmen. This course provides an in-depth examination of frontiers of physics research, including fundamental physics, cosmology, and physics of the future. Questions such as: What is the universe made of? What is the nature of space, time, and matter? What can we learn about the history of the universe and what does it tell us about its future? A large part of 20th century was defined by revolutions in physics ¿ everyday applications of electromagnetism, relativity, and quantum mechanics. What other revolutions can physics bring to human civilization in the 21st century? What is quantum computing? What can physics say about consciousness? What does it take to visit other parts of the solar system, or even other stars? nnWe will also learn to convey these complex topics in engaging and diverse terms to the general public through writing and reading assignments, oral presentations, and multimedia projects. No prior knowledge of physics is necessary; all voices are welcome more »
Preference to freshmen. This course provides an in-depth examination of frontiers of physics research, including fundamental physics, cosmology, and physics of the future. Questions such as: What is the universe made of? What is the nature of space, time, and matter? What can we learn about the history of the universe and what does it tell us about its future? A large part of 20th century was defined by revolutions in physics ¿ everyday applications of electromagnetism, relativity, and quantum mechanics. What other revolutions can physics bring to human civilization in the 21st century? What is quantum computing? What can physics say about consciousness? What does it take to visit other parts of the solar system, or even other stars? nnWe will also learn to convey these complex topics in engaging and diverse terms to the general public through writing and reading assignments, oral presentations, and multimedia projects. No prior knowledge of physics is necessary; all voices are welcome to contribute to the discussion about these big ideas. Learning Goals: By the end of the quarter you will be able to explain the major questions that drive physics research to your friends and peers. You will understand how scientists study the impossibly small and impossibly large and be able to convey this knowledge in clear and concise terms.
Terms: Aut | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-SMA
Instructors: Kuo, C. (PI)

PHYSICS 95Q: The Philosophies of Three Great Physicists

Richard Feynman has famously said, Philosophy of science is about as useful to scientists as ornithology is to birds. A closer look at key moments in the history of physics, however, reveals a different picture. Contrary to the misconception that philosophy has nothing to offer to science in general, and physics in particular, watershed moments in the development of physics were inspired and motivated by deeply held philosophical principles. Similarly, important developments in physics have generated important and difficult philosophical questions. In this sophomore seminar we will explore three significant moments in the development of physics surrounding the works of Newton, Einstein, and Bohr. We will analyze the relationship between the prevailing philosophical views they espoused and the physics they produced. How did Newton come to the view of absolute and fixed space and time? What led Einstein to reject the notion of a fixed space and time and propose a relativistic, and even d more »
Richard Feynman has famously said, Philosophy of science is about as useful to scientists as ornithology is to birds. A closer look at key moments in the history of physics, however, reveals a different picture. Contrary to the misconception that philosophy has nothing to offer to science in general, and physics in particular, watershed moments in the development of physics were inspired and motivated by deeply held philosophical principles. Similarly, important developments in physics have generated important and difficult philosophical questions. In this sophomore seminar we will explore three significant moments in the development of physics surrounding the works of Newton, Einstein, and Bohr. We will analyze the relationship between the prevailing philosophical views they espoused and the physics they produced. How did Newton come to the view of absolute and fixed space and time? What led Einstein to reject the notion of a fixed space and time and propose a relativistic, and even dynamic space-time? What is Bohr's influential doctrine of complementary, and why did several generations of physicists believe it to be an adequate philosophical response to quantum mechanics? We will see that the relationship between philosophy and physics is more similar to the relationship between mathematics and physics where progress in one area is often preceded and followed by progress in the second.
Last offered: Winter 2017 | UG Reqs: WAY-SMA

PHYSICS 100: Introduction to Observational Astrophysics

Designed for undergraduate physics majors but open to all students with a calculus-based physics background and some laboratory and coding experience. Students make and analyze observations using the telescopes at the Stanford Student Observatory. Topics covered include navigating the night sky, the physics of stars and galaxies, telescope instrumentation and operation, imaging and spectroscopic techniques, quantitative error analysis, and effective scientific communication. The course concludes with an independent project where student teams propose and execute an observational astronomy project of their choosing, using techniques learned in class to gather and analyze their data, and presenting their findings in the forms of professional-style oral presentations and research papers. Enrollment by permission. To get a permission number please complete form: http://web.stanford.edu/~elva/physics100prelim.fb If you have not heard from us by the beginning of class, please come to the first class session.
Terms: Spr | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA
Instructors: Allen, S. (PI)

PHYSICS 105: Intermediate Physics Laboratory I: Analog Electronics

Introductory laboratory electronics, designed for Physics and Engineering Physics majors but open to all students with science or engineering interests in analog circuits, instrumentation and signal processing. The course is focused on laboratory exercises that build skills needed for measurements, including sensors, amplification and filtering, and fundamentals of noise in physical systems. The hands-on lab exercises include DC circuits, RC and diode circuits, applications of operational amplifiers, non-linear circuits and optoelectronics. The class exercises build towards a lock-in amplifier contest where each lab section designs and builds a synchronous detection system to measure a weak optical signal, with opportunities to understand the limits of the design, build improvements and compare results with the other lab sections. The course focuses on practical techniques and insight from the lab exercises, with a goal to prepare undergraduates for laboratory research. No formal electronics experience is required beyond exposure to concepts from introductory Physics or Engineering courses (Ohm's law, charge conservation, physics of capacitors and inductors, etc.). Recommended prerequisite: Physics 43 or 63, or Engineering 40A or 40M.
Last offered: Autumn 2019 | UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA

PHYSICS 107: Intermediate Physics Laboratory II: Experimental Techniques and Data Analysis

Experiments on lasers, Gaussian optics, and atom-light interaction, with emphasis on data and error analysis techniques. Students describe a subset of experiments in scientific paper format. Prerequisites: completion of PHYSICS 40 or PHYSICS 60 series, and PHYSICS 70 and PHYSICS 105. Recommended pre- or corequisites: PHYSICS 120 and 130. WIM
Last offered: Winter 2020 | UG Reqs: WAY-AQR, WAY-SMA

PHYSICS 108: Advanced Physics Laboratory: Project

Have you ever wanted to dream up a research question, then design, execute, and analyze an experiment to address it, together with a small group of your fellow students? This is an accelerated, guided experimental research experience, resembling real frontier research. Phenomena that have been studied include magnetization of ferromagnets, quantum hall effect in graphene, interference in superconducting circuits, loss in nanomechanical resonators, and superfluidity in helium. But most projects pursued (drawn from condensed matter and recently also particle physics) have never been done in the class before. Our equipment and apparatus for Physics 108 are very flexible, not standardized like in most other lab classes. We provide substantial resources to help your team. Often, with instructors' help, students obtain unique samples from Stanford research groups. Prerequisite: PHYSICS 105, or other experience in electronics. Suggested but less critical: Physics 130 (many phenomena you mi more »
Have you ever wanted to dream up a research question, then design, execute, and analyze an experiment to address it, together with a small group of your fellow students? This is an accelerated, guided experimental research experience, resembling real frontier research. Phenomena that have been studied include magnetization of ferromagnets, quantum hall effect in graphene, interference in superconducting circuits, loss in nanomechanical resonators, and superfluidity in helium. But most projects pursued (drawn from condensed matter and recently also particle physics) have never been done in the class before. Our equipment and apparatus for Physics 108 are very flexible, not standardized like in most other lab classes. We provide substantial resources to help your team. Often, with instructors' help, students obtain unique samples from Stanford research groups. Prerequisite: PHYSICS 105, or other experience in electronics. Suggested but less critical: Physics 130 (many phenomena you might study build on quantum mechanics) and Physics 107 (experience with data analysis and useful measurement tools: lock-in amplifier, spectrum analyzer.) We recommend taking this class in junior year if possible, as it can inform post-graduation decisions and can empower the professor to write a powerful letter of recommendation.
Last offered: Spring 2020 | UG Reqs: WAY-AQR, WAY-SMA

PHYSICS 110: Advanced Mechanics (PHYSICS 210)

Lagrangian and Hamiltonian mechanics. Principle of least action, Euler-Lagrange equations. Small oscillations and beyond. Symmetries, canonical transformations, Hamilton-Jacobi theory, action-angle variables. Introduction to classical field theory. Selected other topics, including nonlinear dynamical systems, attractors, chaotic motion. Undergraduates register for Physics 110 (4 units). Graduates register for Physics 210 (3 units). Prerequisites: MATH 131P or PHYSICS 111, and PHYSICS 112 or MATH elective 104 or higher. Recommended prerequisite: PHYSICS 130.
Terms: Aut | Units: 3-4 | UG Reqs: GER: DB-NatSci, WAY-FR, WAY-SMA
Instructors: Hayden, P. (PI)

PHYSICS 120: Intermediate Electricity and Magnetism I

Vector analysis. Electrostatic fields, including boundary-value problems and multipole expansion. Dielectrics, static and variable magnetic fields, magnetic materials. Maxwell's equations. Prerequisites: PHYSICS 43 or PHYS 63; MATH 52 and MATH 53. Pre- or corequisite: PHYS 111, MATH 131P or MATH 173. Recommended corequisite: PHYS 112.
Terms: Win | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-FR, WAY-SMA
Instructors: Raghu, S. (PI)
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints