2015-2016 2016-2017 2017-2018 2018-2019 2019-2020
Browse
by subject...
    Schedule
view...
 

31 - 40 of 290 results for: all courses

BIO 86: Cell Biology

This course will focus on the basic structures inside cells and how they execute cellular functions. Topics include organelles, membrane trafficking, the cytoskeleton, cell division, and signal transduction. Classic and recent primary literature will be incorporated into lectures with an emphasis on state of the art experimental approaches. Prerequisites: BIO 83 is highly recommended.
Terms: Spr | Units: 4 | UG Reqs: WAY-SMA

BIO 109A: Building Blocks for Chronic Disease (BIOC 109A, BIOC 209A, HUMBIO 158)

Researchers have come a long way in developing therapies for chronic disease but a gap remains between current solutions and the ability to address the disease in full. This course provides an overview to the underlying biology of many of these diseases and how they may connect to each other. A "think outside of the box" approach to drug discovery is needed to bridge such a gap in solutions, and this course teaches the building blocks for that approach. Could Legoland provide the answer? This is a guest lecture series with original contributions from prominent thought leaders in academia and industry. Interaction between students and guest lecturers is expected. Students with a major, minor or coterm in Biology: 109A/209A or 109B/209B may count toward degree program but not both.
Terms: Win | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-SMA

BIO 109B: Advances in Therapeutic Development: Neuronal Signaling and Immunology (BIOC 109B)

This is a seminar course focused on teaching students about novel research and applications in the fields of neuroscience and immunology. The course will cover topics that range from the neuronal pathways in opioid addiction and the mechanics of pain, to advances in immunotherapy. Students will engage with diverse material from leading neuroscience and cancer immunotherapy experts in the Bay Area. Guest lecturers will visit from both academia and neighboring pharmaceutical/biotechnology companies. Active participation is required. Prerequisite: Biology or Human Biology core. Students with a major, minor or coterm in Biology: 109A/209A or 109B/209B may count toward degree program, but not both.
Terms: Spr | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-SMA

BIO 110: The Chromatin-Regulated Genome (BIO 210)

Maintenance of the genome is a prerequisite for life. In eukaryotes, all DNA-templated processes are tightly connected to chromatin structure and function. This course will explore epigenetic and chromatin regulation of cellular processes related to aging, cancer, stem cell pluripotency, metabolic homeostasis, and development. Course material integrates current literature with a foundational review of histone modifications and nucleosome composition in epigenetic inheritance, transcription, replication, cell division and DNA damage responses. Prerequisite: BIO 41 or BIO 83 or consent of instructor.
Terms: Spr | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-SMA

BIO 112: Human Physiology (HUMBIO 133)

Human physiology will be examined by organ systems: cardiovascular, respiratory, renal, gastrointestinal and endocrine. Molecular and cell biology and signaling principles that underlie organ development, pathophysiology and opportunities for regenerative medicine are discussed, as well as integrative control mechanisms and fetal development. Prerequisite: Human Biology core or Biology Foundations or equivalent or consent of instructor.
Terms: Win | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA

BIO 115: The Hidden Kingdom - Evolution, Ecology and Diversity of Fungi (BIO 239)

Fungi are critical, yet often hidden, components of the biosphere. They regulate decomposition, are primary partners in plant symbiosis and strongly impact agriculture and economics. Students will explore the fascinating world of fungal biology, ecology and evolution via lecture, lab, field exercises and Saturday field trips that will provide traditional and molecular experiences in the collection, analysis and industrial use of diverse fungi. Students will chose an environmental niche, collect and identify resident fungi, and hypothesize about their community relationship. Prerequisite: BIO 81, 85 recommended.
Last offered: Winter 2019 | UG Reqs: WAY-SMA

BIO 117: Biology and Global Change (EARTHSYS 111, EARTHSYS 217, ESS 111)

The biological causes and consequences of anthropogenic and natural changes in the atmosphere, oceans, and terrestrial and freshwater ecosystems. Topics: glacial cycles and marine circulation, greenhouse gases and climate change, tropical deforestation and species extinctions, and human population growth and resource use. Prerequisite: Biology or Human Biology core or BIO 81 or graduate standing.
Terms: Win | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA

BIO 119: Evolution of Marine Ecosystems (EARTHSYS 122, GEOLSCI 123, GEOLSCI 223B)

Life originally evolved in the ocean. When, why, and how did the major transitions occur in the history of marine life? What triggered the rapid evolution and diversification of animals in the Cambrian, after more than 3.5 billion years of Earth's history? What caused Earth's major mass extinction events? How do ancient extinction events compare to current threats to marine ecosystems? How has the evolution of primary producers impacted animals, and how has animal evolution impacted primary producers? In this course, we will review the latest evidence regarding these major questions in the history of marine ecosystems. We will develop familiarity with the most common groups of marine animal fossils. We will also conduct original analyses of paleontological data, developing skills both in the framing and testing of scientific hypotheses and in data analysis and presentation.
Last offered: Autumn 2017 | UG Reqs: GER: DB-NatSci, WAY-SMA

BIO 142: Molecular Geomicrobiology Laboratory (EARTHSYS 143, ESS 143, ESS 243)

In this course, students will be studying the biosynthesis of cyclic lipid biomarkers, molecules that are produced by modern microbes that can be preserved in rocks that are over a billion years old and which geologist use as molecular fossils. Students will be tasked with identifying potential biomarker lipid synthesis genes in environmental genomic databases, expressing those genes in a model bacterial expression system in the lab, and then analyzing the lipid products that are produced. The overall goal is for students to experience the scientific research process including generating hypotheses, testing these hypotheses in laboratory experiments, and communicating their results through a publication style paper. Prerequisites: BIO83 and CHEM35 or permission of the instructor.
Terms: Spr | Units: 3-4 | UG Reqs: WAY-SMA

BIO 148: Evolution of Terrestrial Ecosystems (BIO 228, EARTHSYS 128, GEOLSCI 128, GEOLSCI 228)

The what, when, where, and how do we know it regarding life on land through time. Fossil plants, fungi, invertebrates, and vertebrates (yes, dinosaurs) are all covered, including how all of those components interact with each other and with changing climates, continental drift, atmospheric composition, and environmental perturbations like glaciation and mass extinction. The course involves both lecture and lab components. Graduate students registering at the 200-level are expected to write a term paper, but can opt out of some labs where appropriate.
| UG Reqs: WAY-SMA
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints