## PHYSICS 41E: Mechanics, Concepts, Calculations, and Context

Physics 41E (
Physics 41 Extended) is an 5-unit version of
Physics 41 (4 units) for students with little or no high school physics or calculus. Course topics and mathematical complexity are identical to
Physics 41, but the extra classroom time allows students to engage with concepts, develop problem solving skills, and become fluent in mathematical tools that include vector representations and operations, and calculus. The course will use problems drawn from everyday life to explore important physical principles in mechanics, such as Newton's Laws of motion, equations of kinematics, and conservation of energy and momentum. Prerequisite:
Math 19 or equivalent; Co-requisite:
Math 20 or equivalent. Enrollment is via permission number which can be obtained by filling in the application at
https://stanforduniversity.qualtrics.com/jfe/form/SV_6gpr3SkM76WNDVP.

Terms: Win
| Units: 5
| UG Reqs: WAY-SMA

Instructors:
Church, S. (PI)
;
Cole, K. (PI)
;
Drell, P. (PI)
...
more instructors for PHYSICS 41E »

Instructors:
Church, S. (PI)
;
Cole, K. (PI)
;
Drell, P. (PI)
;
Wieman, C. (PI)
;
Chaves, K. (TA)
;
Fritz, A. (TA)
;
Pourshafeie, A. (TA)
;
Rickman, A. (TA)

## PHYSICS 43: Electricity and Magnetism

What is electricity? What is magnetism? How are they related? How do these phenomena manifest themselves in the physical world? The theory of electricity and magnetism, as codified by Maxwell's equations, underlies much of the observable universe. Students develop both conceptual and quantitative knowledge of this theory. Topics include: electrostatics; magnetostatics; simple AC and DC circuits involving capacitors, inductors, and resistors; integral form of Maxwell's equations; electromagnetic waves. Principles illustrated in the context of modern technologies. Broader scientific questions addressed include: How do physical theories evolve? What is the interplay between basic physical theories and associated technologies? Discussions based on the language of mathematics, particularly differential and integral calculus, and vectors. Physical understanding fostered by peer interaction and demonstrations in lecture, and discussion sections based on interactive group problem solving. Prerequisite:
PHYSICS 41 or equivalent.
MATH 21 or
MATH 51 or
CME 100 or equivalent. Recommended corequisite:
MATH 52 or
CME 102.

Terms: Spr
| Units: 4
| UG Reqs: GER: DB-NatSci, WAY-SMA

Instructors:
Kasevich, M. (PI)
;
Boukahil, I. (TA)
;
Chi, H. (TA)
...
more instructors for PHYSICS 43 »

Instructors:
Kasevich, M. (PI)
;
Boukahil, I. (TA)
;
Chi, H. (TA)
;
Derollez, R. (TA)
;
Gruenke, R. (TA)
;
Hoke, J. (TA)
;
Kandel, D. (TA)
;
Mueller, E. (TA)
;
Mullane, S. (TA)
;
Murphy, J. (TA)
;
Peterson, J. (TA)
;
Wagner-Carena, S. (TA)
;
Wang, N. (TA)
;
Wu, Y. (TA)
;
YU, Y. (TA)

## PHYSICS 45: Light and Heat

What is temperature? How do the elementary processes of mechanics, which are intrinsically reversible, result in phenomena that are clearly irreversible when applied to a very large number of particles, the ultimate example being life? In thermodynamics, students discover that the approach of classical mechanics is not sufficient to deal with the extremely large number of particles present in a macroscopic amount of gas. The paradigm of thermodynamics leads to a deeper understanding of real-world phenomena such as energy conversion and the performance limits of thermal engines. In optics, students see how a geometrical approach allows the design of optical systems based on reflection and refraction, while the wave nature of light leads to interference phenomena. The two approaches come together in understanding the diffraction limit of microscopes and telescopes. Discussions based on the language of mathematics, particularly calculus. Physical understanding fostered by peer interaction and demonstrations in lecture, and discussion sections based on interactive group problem solving. Prerequisite:
PHYSICS 41 or equivalent.
MATH 21 or
MATH 51 or
CME 100 or equivalent.

Terms: Aut
| Units: 4
| UG Reqs: GER: DB-NatSci, WAY-SMA

Instructors:
Hartnoll, S. (PI)
;
Aaland Zhou, S. (TA)
;
Cheung, A. (TA)
...
more instructors for PHYSICS 45 »

Instructors:
Hartnoll, S. (PI)
;
Aaland Zhou, S. (TA)
;
Cheung, A. (TA)
;
Mazenc, E. (TA)
;
Mukhopadhyay, P. (TA)
;
Na Narong, T. (TA)
;
Pearce, M. (TA)
;
Shyani, M. (TA)
;
Sun, Y. (TA)

## PHYSICS 50: Astronomy Laboratory and Observational Astronomy

Introduction to observational astronomy emphasizing the use of optical telescopes. Observations of stars, nebulae, and galaxies in laboratory sessions with telescopes at the Stanford Student Observatory. Meets at the observatory one evening per week from dusk until well after dark, in addition to day-time lectures each week. No previous physics required. Limited enrollment.

Terms: Aut, Sum
| Units: 3
| UG Reqs: GER: DB-NatSci, WAY-AQR, WAY-SMA

Instructors:
Belikov, R. (PI)
;
Kuo, C. (PI)
;
Anderson, T. (TA)
...
more instructors for PHYSICS 50 »

Instructors:
Belikov, R. (PI)
;
Kuo, C. (PI)
;
Anderson, T. (TA)
;
Hernandez, A. (TA)
;
TO, C. (TA)
;
Yang, E. (TA)

## PHYSICS 61: Mechanics and Special Relativity

(First in a three-part advanced freshman physics series:
PHYSICS 61,
PHYSICS 63,
PHYSICS 65.) This course covers Einstein's special theory of relativity and Newtonian mechanics at a level appropriate for students with a strong high school mathematics and physics background, who are contemplating a major in Physics or Engineering Physics, or are interested in a rigorous treatment of physics. Postulates of special relativity, simultaneity, time dilation, length contraction, the Lorentz transformation, causality, and relativistic mechanics. Central forces, contact forces, linear restoring forces. Momentum transport, work, energy, collisions. Angular momentum, torque, moment of inertia in three dimensions. Damped and forced harmonic oscillators. Uses the language of vectors and multivariable calculus. Recommended prerequisites: Mastery of mechanics at the level of AP Physics C and AP Calculus BC or equivalent. Corequisite:
MATH 51 or
MATH 61CM or
MATH 61DM.

Terms: Aut
| Units: 4
| UG Reqs: GER: DB-NatSci, WAY-FR, WAY-SMA

Instructors:
Burchat, P. (PI)

## PHYSICS 63: Electricity, Magnetism, and Waves

(Second in a three-part advanced freshman physics series:
PHYSICS 61,
PHYSICS 63,
PHYSICS 65.) This course covers the foundations of electricity and magnetism for students with a strong high school mathematics and physics background, who are contemplating a major in Physics or Engineering Physics, or are interested in a rigorous treatment of physics. Electricity, magnetism, and waves with some description of optics. Electrostatics and Gauss' law. Electric potential, electric field, conductors, image charges. Electric currents, DC circuits. Moving charges, magnetic field, Ampere's law. Solenoids, transformers, induction, AC circuits, resonance. Relativistic point of view for moving charges. Displacement current, Maxwell's equations. Electromagnetic waves, dielectrics. Diffraction, interference, refraction, reflection, polarization. Prerequisite:
PHYSICS 61 and
MATH 51 or
MATH 61CM or
MATH 61DM. Pre- or corequisite:
MATH 52 or
MATH 62CM or
MATH 62DM.

Terms: Win
| Units: 4
| UG Reqs: GER: DB-NatSci, WAY-FR, WAY-SMA

Instructors:
Graham, P. (PI)
;
Coppess, K. (TA)
;
Delacretaz, L. (TA)
...
more instructors for PHYSICS 63 »

Instructors:
Graham, P. (PI)
;
Coppess, K. (TA)
;
Delacretaz, L. (TA)
;
Garber, B. (TA)
;
Mazenc, E. (TA)

## PHYSICS 65: Quantum and Thermal Physics

(Third in a three-part advanced freshman physics series:
PHYSICS 61,
PHYSICS 63,
PHYSICS 65.) This course introduces the foundations of quantum and statistical mechanics for students with a strong high school mathematics and physics background, who are contemplating a major in Physics or Engineering Physics, or are interested in a rigorous treatment of physics. Quantum mechanics: atoms, electrons, nuclei. Quantization of light, Planck's constant. Photoelectric effect, Compton and Bragg scattering. Bohr model, atomic spectra. Matter waves, wave packets, interference. Fourier analysis and transforms, Heisenberg uncertainty relationships. Schrödinger equation, eigenfunctions and eigenvalues. Particle-in-a-box, simple harmonic oscillator, barrier penetration, tunneling, WKB and approximate solutions. Time-dependent and multi-dimensional solution concepts. Coulomb potential and hydrogen atom structure. Thermodynamics and statistical mechanics: ideal gas, equipartition, heat capacity. Probability, counting states, entropy, equilibrium, chemical potential. Laws of thermodynamics. Cycles, heat engines, free energy. Partition function, Boltzmann statistics, Maxwell speed distribution, ideal gas in a box, Einstein model. Quantum statistical mechanics: classical vs. quantum distribution functions, fermions vs. bosons. Prerequisites:
PHYSICS 61 &
PHYSICS 63. Pre- or corequisite:
MATH 53 or
MATH 63CM or
MATH 63DM.

Terms: Spr
| Units: 4
| UG Reqs: GER: DB-NatSci, WAY-FR, WAY-SMA

## PHYSICS 70: Foundations of Modern Physics

Required for Physics or Engineering Physics majors who completed the PHYSICS 40 series. Introduction to special relativity: reference frames, Michelson-Morley experiment. Postulates of relativity, simultaneity, time dilation. Length contraction, the Lorentz transformation, causality. Doppler effect. Relativistic mechanics and mass, energy, momentum relations. Introduction to quantum physics: atoms, electrons, nuclei. Quantization of light, Planck constant. Photoelectric effect, Compton and Bragg scattering. Bohr model, atomic spectra. Matter waves, wave packets, interference. Fourier analysis and transforms, Heisenberg uncertainty relationships. Schrödinger equation, eigenfunctions and eigenvalues. Particle-in-a-box, simple harmonic oscillator, barrier penetration, tunneling, WKB and approximate solutions. Time-dependent and multi-dimensional solution concepts. Coulomb potential and hydrogen atom structure. Prerequisites:
PHYSICS 41,
PHYSICS 43. Pre or corequisite:
PHYSICS 45. Recommended: prior or concurrent registration in
MATH 53.

Terms: Aut
| Units: 4
| UG Reqs: GER: DB-NatSci, WAY-SMA

## PHYSICS 83N: Physics in the 21st Century

Preference to freshmen. Current topics at the frontier of modern physics. This course provides an in-depth examination of two of the biggest physics discoveries of the 21st century: that of the Higgs boson and Dark Energy. Through studying these discoveries we will explore the big questions driving modern particle physics, the study of nature's most fundamental pieces, and cosmology, the study of the evolution and nature of the universe. Questions such as: What is the universe made of? What are the most fundamental particles and how do they interact with each other? What can we learn about the history of the universe and what does it tell us about it's future? We will learn about the tools scientists use to study these questions such as the Large Hadron Collider and the Hubble Space Telescope. We will also learn to convey these complex topics in engaging and diverse terms to the general public through writing and reading assignments, oral presentations, and multimedia projects. The syllabus includes a tour of SLAC, the site of many major 20th century particle discoveries, and a virtual visit of the control room of the ATLAS experiment at CERN amongst other activities. No prior knowledge of physics is necessary; all voices are welcome to contribute to the discussion about these big ideas. Learning Goals: By the end of the quarter you will be able to explain the major questions that drive particle physics and cosmology to your friends and peers. You will understand how scientists study the impossibly small and impossibly large and be able to convey this knowledge in clear and concise terms.

Terms: Spr
| Units: 3
| UG Reqs: GER: DB-NatSci, WAY-SMA

Instructors:
Tompkins, L. (PI)

## PHYSICS 95Q: The Philosophies of Three Great Physicists

Richard Feynman has famously said, Philosophy of science is about as useful to scientists as ornithology is to birds. A closer look at key moments in the history of physics, however, reveals a different picture. Contrary to the misconception that philosophy has nothing to offer to science in general, and physics in particular, watershed moments in the development of physics were inspired and motivated by deeply held philosophical principles. Similarly, important developments in physics have generated important and difficult philosophical questions. In this sophomore seminar we will explore three significant moments in the development of physics surrounding the works of Newton, Einstein, and Bohr. We will analyze the relationship between the prevailing philosophical views they espoused and the physics they produced. How did Newton come to the view of absolute and fixed space and time? What led Einstein to reject the notion of a fixed space and time and propose a relativistic, and even dynamic space-time? What is Bohr's influential doctrine of complementary, and why did several generations of physicists believe it to be an adequate philosophical response to quantum mechanics? We will see that the relationship between philosophy and physics is more similar to the relationship between mathematics and physics where progress in one area is often preceded and followed by progress in the second.

Last offered: Winter 2017
| UG Reqs: WAY-SMA

Filter Results: