2016-2017 2017-2018 2018-2019 2019-2020 2020-2021
Browse
by subject...
    Schedule
view...
 

201 - 210 of 274 results for: all courses

MATSCI 144: Thermodynamic Evaluation of Green Energy Technologies

Understand the thermodynamics and efficiency limits of modern green technologies such as carbon dioxide capture from air, fuel cells, batteries, and solar-thermal power. Recommended: ENGR 50 or equivalent introductory materials science course. (Formerly 154)
Terms: Spr | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA

MATSCI 151: Microstructure and Mechanical Properties (MATSCI 251)

Primarily for students without a materials background. Mechanical properties and their dependence on microstructure in a range of engineering materials. Elementary deformation and fracture concepts, strengthening and toughening strategies in metals and ceramics. Topics: dislocation theory, mechanisms of hardening and toughening, fracture, fatigue, and high-temperature creep. Undergraduates register in 151 for 4 units; graduates register for 251 in 3 units.
Terms: Aut | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA

MATSCI 152: Electronic Materials Engineering

Materials science and engineering for electronic device applications. Kinetic molecular theory and thermally activated processes; band structure; electrical conductivity of metals and semiconductors; intrinsic and extrinsic semiconductors; elementary p-n junction theory; operating principles of light emitting diodes, solar cells, thermoelectric coolers, and transistors. Semiconductor processing including crystal growth, ion implantation, thin film deposition, etching, lithography, and nanomaterials synthesis.
Terms: Spr | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA

MATSCI 161: Energy Materials Laboratory (MATSCI 171)

A material that is currently being used in a cutting edge energy -related device such as a solar cell, battery or smart window will be thoroughly characterized throughout the quarter. Fabrication techniques could include electroplating, spin coating and thermal evaporation. There will be an emphasis in this course on characterization methods such as scanning electron microscopy, x-ray photoelectron spectroscopy, atomic force microscopy, optical microscopy, four-point probe measurements of conductivity, visible absorption and reflection spectroscopy and electrochemical measurements (cyclic voltammetry). Devices will be fabricated and their performance will be tested. In this Writing in the Major course, students will put together all of the data they collect during the quarter into a final paper. Undergraduates register for 161 for 4 units; graduates register for 171 for 3 units. Prerequisites: MATSCI 143 or equivalent course in materials characterization
Terms: Win | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA

MATSCI 165: Nanoscale Materials Physics Computation Laboratory (MATSCI 175)

Computational exploration of fundamental topics in materials science using Java-based computation and visualization tools. Emphasis is on the atomic-scale origins of macroscopic materials phenomena. Simulation methods include molecular dynamics and Monte Carlo with applications in thermodynamics, kinetics, and topics in statistical mechanics. Undergraduates register for 165 for 4 units; graduates register for 175 for 3 units. Prerequisites: Undergraduate physics and MATSCI 144 or equivalent coursework in thermodynamics. MATSCI 145 recommended.
Terms: Spr | Units: 3-4 | UG Reqs: WAY-SMA

MATSCI 190: Organic and Biological Materials (MATSCI 210)

Unique physical and chemical properties of organic materials and their uses. The relationship between structure and physical properties, and techniques to determine chemical structure and molecular ordering. Examples include liquid crystals, dendrimers, carbon nanotubes, hydrogels, and biopolymers such as lipids, protein, and DNA. Prerequisite: Thermodynamics and ENGR 50 or equivalent. Undergraduates register for 190 for 4 units; graduates register for 210 for 3 units.
Terms: Spr | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA

MATSCI 192: Materials Chemistry (MATSCI 202)

An introduction to the fundamental physical chemical principles underlying materials properties. Beginning from basic quantum chemistry, students will learn how the electronic configuration of molecules and solids impacts their structure, stability/reactivity, and spectra. Topics for the course include molecular symmetry, molecular orbital theory, solid-state chemistry, coordination compounds, and nanomaterials chemistry. Using both classroom lectures and journal discussions, students will gain an understanding of and be well-positioned to contribute to the frontiers of materials chemistry, ranging from solar-fuel generation to next-generation cancer treatments. Undergraduates register in 192 for 4 units; graduates register in 202 for 3 units.
Terms: Aut | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA

MATSCI 199: Electronic and Optical Properties of Solids (MATSCI 209)

The concepts of electronic energy bands and transports applied to metals, semiconductors, and insulators. The behavior of electronic and optical devices including p-n junctions, MOS-capacitors, MOSFETs, optical waveguides, quantum-well lasers, light amplifiers, and metallo-dielectric light guides. Emphasis is on relationships between structure and physical properties. Elementary quantum and statistical mechanics concepts are used. Prerequisite: MATSCI 195/205 or equivalent. Undergraduates register for 199 for 4 units; graduates register for 209 for 3 units.
Terms: Spr | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA

ME 30: Engineering Thermodynamics

The basic principles of thermodynamics are introduced in this course. Concepts of energy and entropy from elementary considerations of the microscopic nature of matter are discussed. The principles are applied in thermodynamic analyses directed towards understanding the performances of engineering systems. Methods and problems cover socially responsible economic generation and utilization of energy in central power generation plants, solar systems, refrigeration devices, and automobile, jet and gas-turbine engines.
Terms: Aut, Win, Spr, Sum | Units: 3 | UG Reqs: WAY-AQR, WAY-SMA

MED 50N: Translational Research: Turning Science into Medicine

Investigates how scientific research informs how physicians take care of patients and how clinical research informs how scientific experiments are conducted. Topics include how these two processes have improved health and have resulted in innovation and scientic progress; specific human disease areas in allergy and immunology that affect all ages of patients globally, including food allergy; scientific concepts of research that helped in discovery of novel diagnostics and treatment of disease; ethical roles of physicians and scientists in conducting translational research in human disease.
Terms: Win | Units: 3 | UG Reqs: WAY-SMA
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints