2015-2016 2016-2017 2017-2018 2018-2019 2019-2020
Browse
by subject...
    Schedule
view...
 

61 - 70 of 284 results for: %

BIOHOPK 155H: Developmental Biology and Evolution (BIOHOPK 255H)

(Graduate students register for 255) This course focusses on how animals form their basic body plans; from the formation of their germ layers; ectoderm, endoderm and mesoderm, to how they are organized along the main developmental axes; the anteroposterior and dorsoventral axes. The course will focus in part on the molecular mechanisms that underlie these developmental decisions from work carried out in established developmental model species. However, we will also explore the current understanding of how these mechanisms evolved from new insights from emerging models representing a broad range of animal phyla. The setting at Hopkins Marine Station will allow us to carry out experiments from animals collected in the field, and the course will involve a substantial lab component to complement concepts and approaches presented in lecture. nPre-requisites : Biocore or by permission of instructor
Last offered: Winter 2017 | UG Reqs: WAY-SMA

BIOHOPK 161H: Invertebrate Zoology (BIOHOPK 261H)

(Graduate students register for 261H.) Survey of invertebrate diversity emphasizing form and function in a phylogenetic framework. Morphological diversity, life histories, physiology, and ecology of the major invertebrate groups, concentrating on local marine forms as examples. Current views on the phylogenetic relationships and evolution of the invertebrates. Lectures, lab, plus field trips. Satisfies Central Menu Area 3 for Bio majors.
Terms: Win | Units: 5 | UG Reqs: GER: DB-NatSci, WAY-SMA

BIOHOPK 163H: Oceanic Biology (BIOHOPK 263H)

(Graduate students register for 263H.) How the physics and chemistry of the oceanic environment affect marine plants and animals. Topics: seawater and ocean circulation, separation of light and nutrients in the two-layered ocean, oceanic food webs and trophic interactions, oceanic environments, biogeography, and global change. Lectures, discussion, and field trips. Satisfies Central Menu Area 4 for Bio majors. Recommended: PHYSICS 21 or 51, CHEM 31, or consent of instructor.
Last offered: Winter 2018 | UG Reqs: GER: DB-NatSci, WAY-SMA

BIOHOPK 172H: Marine Ecology: From Organisms to Ecosystems (BIOHOPK 272H)

(Graduate students register for 272H.) This course incorporates the approaches of experimental ecology, biomechanics (ecomechanics), and physiology to develop an integrated perspective on the factors that govern the structures of marine ecosystems and how environment change, including anthropogenic influences, affects ecosystems' species composition and health. Focus is on rocky intertidal, kelp forest, estuarine, and midwater ecosystems of Monterey Bay. Experimental projects done in the field offer experience in a variety of ecological techniques and in analysis of ecological data. Students will engage in presentation and debates of current topics in marine ecology and conservation. Satisfies Central Menu Area 4 for Bio majors. Prerequisite: consent of instructor. Fulfills WIM in Biology.
Last offered: Winter 2018 | UG Reqs: GER: DB-NatSci, WAY-SMA

BIOHOPK 179H: Physiological Ecology of Marine Megafauna (BIOHOPK 279H)

(Graduate students register for 279H.) The ocean is home to the largest animals of all-time. How, when, and why did gigantism evolve in different taxa? What are the consequences of large body size? This course will focus on how biological processes scale with body size, with an emphasis on oceanic megafauna including marine mammals, birds, fishes, and reptiles. In particular, the course will explore the functional mechanisms that generate the scaling relationships for physiological and ecological traits, such as metabolism, ecosystem function and body size evolution. Students will also be introduced to state-of-the-art technologies used to student marine megafauna in some of the most logistically challenging habitats on earth.
Last offered: Spring 2017 | UG Reqs: WAY-SMA

BIOHOPK 182H: Stanford at Sea (BIOHOPK 323H, EARTHSYS 323, ESS 323)

(Graduate students register for 323H.) Five weeks of marine science including oceanography, marine physiology, policy, maritime studies, conservation, and nautical science at Hopkins Marine Station, followed by five weeks at sea aboard a sailing research vessel in the Pacific Ocean. Shore component comprised of three multidisciplinary courses meeting daily and continuing aboard ship. Students develop an independent research project plan while ashore, and carry out the research at sea. In collaboration with the Sea Education Association of Woods Hole, MA. Only 6 units may count towards the Biology major.
Last offered: Spring 2019 | UG Reqs: GER: DB-NatSci, WAY-SMA

BIOHOPK 185H: Ecology and Conservation of Kelp Forest Communities (BIOHOPK 285H)

(Graduate students register for 285H.) Five week course. Daily lectures, labs, and scuba dives focused on scientific diving and quantitative ecological methods in kelp forests.. Topics include identification and natural history of resident organisms, ecological processes, and subtidal field techniques. Class projects contribute to long-term monitoring at Hopkins Marine Station. It is recommended (but not required) that students complete the Stanford Scientific Diver Training session, typically offered prior to the start of the course. Prerequisites: consent of instructor; rescue scuba certification and scuba equipment.
Terms: Sum | Units: 5 | UG Reqs: WAY-SMA
Instructors: Elahi, R. (PI)

BIOHOPK 187H: Sensory Ecology (BIOHOPK 287H)

(Graduate students register for 287H.) Topics: the ways animals receive, filter, and process information gleaned from the environment, sensory receptor mechanisms, neural processing, specialization to life underwater, communication within and between species, importance of behavior to ecosystem structure and dynamics, impact of acoustic and light pollution on marine animals. Emphasis is on the current scientific literature. The laboratory portion of the class explores sensory mechanisms using neurobiological methods and methods of experimental animal behavior.
Last offered: Winter 2018 | UG Reqs: WAY-SMA

CEE 6: Physics of Cities (URBANST 109)

An introduction to the modern study of complex systems with cities as an organizing focus. Topics will include: cities as interacting systems; cities as networks; flows of resources and information through cities; principles of organization, self-organization, and complexity; how the properties of cities scale with size; and human movement patterns. No particular scientific background is required, but comfort with basic mathematics will be assumed. Prerequisites: MATH 19 and 20, or the equivalent
Terms: Spr | Units: 3 | UG Reqs: WAY-SMA

CEE 63: Weather and Storms (CEE 263C)

Daily and severe weather and global climate. Topics: structure and composition of the atmosphere, fog and cloud formation, rainfall, local winds, wind energy, global circulation, jet streams, high and low pressure systems, inversions, el Niño, la Niña, atmosphere/ocean interactions, fronts, cyclones, thunderstorms, lightning, tornadoes, hurricanes, pollutant transport, global climate and atmospheric optics.
Terms: Aut | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-SMA
Instructors: Jacobson, M. (PI)
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints