2015-2016 2016-2017 2017-2018 2018-2019 2019-2020
Browse
by subject...
    Schedule
view...
 

61 - 70 of 137 results for: MATH

MATH 205B: Real Analysis

Point set topology, basic functional analysis, Fourier series, and Fourier transform. Prerequisites: 171 and 205A or equivalent.nnNOTE: Undergraduates require instructor permission to enroll. Undergraduates interested in taking the course should contact the instructor for permission, providing information about relevant background such as performance in prior coursework, reading, etc.
Terms: Win | Units: 3

MATH 205C: Real Analysis

Continuation of 205B.nnNOTE: Undergraduates require instructor permission to enroll. Undergraduates interested in taking the course should contact the instructor for permission, providing information about relevant background such as performance in prior coursework, reading, etc.
Terms: Spr | Units: 3
Instructors: Vasy, A. (PI)

MATH 210A: Modern Algebra I

Basic commutative ring and module theory, tensor algebra, homological constructions, linear and multilinear algebra, canonical forms and Jordan decomposition. Prerequisite: 121 and 122 or equivalent.nnNOTE: Undergraduates require instructor permission to enroll. Undergraduates interested in taking the course should contact the instructor for permission, providing information about relevant background such as performance in prior coursework, reading, etc.
Terms: Aut | Units: 3

MATH 210B: Modern Algebra II

Continuation of 210A. Topics in field theory, commutative algebra, algebraic geometry, and finite group representations. Prerequisites: 210A, and 121 or equivalent.nnNOTE: Undergraduates require instructor permission to enroll. Undergraduates interested in taking the course should contact the instructor for permission, providing information about relevant background such as performance in prior coursework, reading, etc.
Terms: Win | Units: 3

MATH 210C: Lie Theory

Topics in Lie groups, Lie algebras, and/or representation theory. Prerequisite: math 210B. May be repeated for credit.nnNOTE: Undergraduates require instructor permission to enroll. Undergraduates interested in taking the course should contact the instructor for permission, providing information about relevant background such as performance in prior coursework, reading, etc.
Terms: Spr | Units: 3 | Repeatable for credit
Instructors: Bump, D. (PI)

MATH 215A: Algebraic Topology

Topics: fundamental group and covering spaces, basics of homotopy theory, homology and cohomology (simplicial, singular, cellular), products, introduction to topological manifolds, orientations, Poincare duality. Prerequisites: 113, 120, and 171.nnNOTE: Undergraduates require instructor permission to enroll. Undergraduates interested in taking the course should contact the instructor for permission, providing information about relevant background such as performance in prior coursework, reading, etc.
Terms: Aut | Units: 3

MATH 215B: Differential Topology

Topics: Basics of differentiable manifolds (tangent spaces, vector fields, tensor fields, differential forms), embeddings, tubular neighborhoods, integration and Stokes' Theorem, deRham cohomology, intersection theory via Poincare duality, Morse theory. Prerequisite: 215AnnNOTE: Undergraduates require instructor permission to enroll. Undergraduates interested in taking the course should contact the instructor for permission, providing information about relevant background such as performance in prior coursework, reading, etc.
Terms: Win | Units: 3
Instructors: Cohen, R. (PI)

MATH 215C: Differential Geometry

This course will be an introduction to Riemannian Geometry. Topics will include the Levi-Civita connection, Riemann curvature tensor, Ricci and scalar curvature, geodesics, parallel transport, completeness, geodesics and Jacobi fields, and comparison techniques. Prerequisites 146 or 215BnnNOTE: Undergraduates require instructor permission to enroll. Undergraduates interested in taking the course should contact the instructor for permission, providing information about relevant background such as performance in prior coursework, reading, etc.
Terms: Spr | Units: 3

MATH 216A: Introduction to Algebraic Geometry

Algebraic varieties, and introduction to schemes, morphisms, sheaves, and the functorial viewpoint. May be repeated for credit. Prerequisites: 210AB or equivalent.nnNOTE: Undergraduates require instructor permission to enroll. Undergraduates interested in taking the course should contact the instructor for permission, providing information about relevant background such as performance in prior coursework, reading, etc.
Terms: Aut | Units: 3
Instructors: Conrad, B. (PI)

MATH 216B: Introduction to Algebraic Geometry

Continuation of 216A. May be repeated for credit.nnNOTE: Undergraduates require instructor permission to enroll. Undergraduates interested in taking the course should contact the instructor for permission, providing information about relevant background such as performance in prior coursework, reading, etc.
Terms: Win | Units: 3 | Repeatable for credit
Instructors: Larson, E. (PI)
Filter Results:
term offered
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints