2018-2019 2019-2020 2020-2021 2021-2022 2022-2023
Browse
by subject...
    Schedule
view...
 

1 - 10 of 29 results for: ESS

ESS 38N: The Worst Journey in the World: The Science, Literature, and History of Polar Exploration (EARTHSYS 38N, GEOLSCI 38N)

This course examines the motivations and experiences of polar explorers under the harshest conditions on Earth, as well as the chronicles of their explorations and hardships, dating to the 1500s for the Arctic and the 1700s for the Antarctic. Materials include The Worst Journey in the World by Aspley Cherry-Garrard who in 1911 participated in a midwinter Antarctic sledging trip to recover emperor penguin eggs. Optional field trip into the high Sierra in March.
Terms: Win | Units: 3 | UG Reqs: GER: DB-NatSci
Instructors: Dunbar, R. (PI)

ESS 65N: How to make a tornado (and other flows in the atmosphere and ocean)

In this seminar students explore the physics of atmospheric and oceanic flows experientially using rotating tanks of water on small turntables provided to students in the class. Different flow phenomena from tornado formation, ocean gyres, to hurricane propagation are introduced each week and experiments are designed to simulate them. The experiments, like the oceanic and atmospheric motions they are simulating, can be visually stunning, like pieces of fluid artwork, and the students will learn various visualization techniques to draw out their beauty. The goal is for students to practice the scientific method while gaining an understanding and appreciation for how the ocean and atmosphere work.
Terms: Win | Units: 3 | UG Reqs: WAY-SMA | Repeatable 2 times (up to 3 units total)
Instructors: Thomas, L. (PI)

ESS 71: Planet Ocean (BIO 71)

Oceans make up the majority of our planet's area and living spaces and are fundamental to biodiversity, climate, food and commerce.This course covers integration of the oceanography and marine biology of diverse ocean habitats such as the deep sea, coral reefs, open ocean, temperate coasts, estuaries and polar seas. Lectures include state of the art knowledge as well as emerging technologies for future exploration. The second section focuses on how the oceans link to the global environment, and how ocean capacity helps determine human sustainability.
Terms: Win | Units: 4 | UG Reqs: WAY-SMA

ESS 111: Biology and Global Change (BIO 117, EARTHSYS 111, EARTHSYS 217)

The biological causes and consequences of anthropogenic and natural changes in the atmosphere, oceans, and terrestrial and freshwater ecosystems. Topics: glacial cycles and marine circulation, greenhouse gases and climate change, tropical deforestation and species extinctions, and human population growth and resource use. Prerequisite: Biology or Human Biology core or BIO 81 or graduate standing.
Terms: Win | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA

ESS 123: Biosphere-Atmosphere Interactions (EARTHSYS 123A, EARTHSYS 223, ESS 223)

How do ecosystems respond to climate change, and how can ecosystems affect climate? This course describes, quantitatively and qualitatively, the different feedback mechanisms between the land surface and climate at both local and global scales. We will also discuss how these processes can be measured across earth's diverse ecosystems, and how they are represented in earth system models used to study climate change (and models used to track the feasibility of natural climate solutions). Basic familiarity with programming is helpful.
Terms: Win | Units: 3-4

ESS 141: Remote Sensing of the Oceans (EARTHSYS 141, EARTHSYS 241, ESS 241, GEOPHYS 141)

How to observe and interpret physical and biological changes in the oceans using satellite technologies. Topics: principles of satellite remote sensing, classes of satellite remote sensors, converting radiometric data into biological and physical quantities, sensor calibration and validation, interpreting large-scale oceanographic features.
Terms: Win | Units: 3-4 | UG Reqs: GER: DB-NatSci, WAY-AQR

ESS 148: Introduction to Physical Oceanography (CEE 162D, CEE 262D, EARTHSYS 164)

An introduction to what causes the motions in the oceans. Topics include: the physical environment of the ocean; properties of sea water; atmosphere-ocean interactions; conservation of heat, salt, mass, and momentum, geostrophic flows, wind-driven circulation patterns; the Gulf Stream; equatorial dynamics and El Nino; and tides. By the end of the course, students will have physical intuition for why ocean currents look the way they do and a basic mathematical framework for quantifying the motions. Prerequisite: PHYSICS 41
Terms: Win | Units: 4 | UG Reqs: GER: DB-NatSci
Instructors: Fong, D. (PI)

ESS 158: Geomicrobiology (EARTHSYS 158, EARTHSYS 258, ESS 258)

How microorganisms shape the geochemistry of the Earth's crust including oceans, lakes, estuaries, subsurface environments, sediments, soils, mineral deposits, and rocks. Topics include mineral formation and dissolution; biogeochemical cycling of elements (carbon, nitrogen, sulfur, and metals); geochemical and mineralogical controls on microbial activity, diversity, and evolution; life in extreme environments; and the application of new techniques to geomicrobial systems. Recommended: introductory chemistry and microbiology such as CEE 274A.
Terms: Win | Units: 3 | UG Reqs: WAY-SMA
Instructors: Francis, C. (PI)

ESS 185: Adaptation (EARTHSYS 183)

Adaptation is the process by which organisms or societies become better suited to their environments. In this class, we will explore three distinct but related notions of adaptation. Biological adaptations arise through natural selection, while cultural adaptations arise from a variety of processes, some of which closely resemble natural selection. A newer notion of adaptation has emerged in the context of climate change where adaptation takes on a highly instrumental, and often planned, quality as a response to the negative impacts of environmental change. We will discuss each of these ideas, using their commonalities and subtle differences to develop a broader understanding of the dynamic interplay between people and their environments. Topics covered will include, among others: evolution, natural selection, levels of selection, formal models of cultural evolution, replicator dynamics, resilience, rationality and its limits, complexity, adaptive management.
Terms: Win | Units: 3 | UG Reqs: WAY-SMA

ESS 208: Topics in Geobiology (GEOLSCI 208)

Reading course addressing current topics in geobiology. Topics will vary from year to year, but will generally cover areas of current debate in the primary literature, such as the origin of life, the origin and consequences of oxygenic photosynthesis, environmental controls on and consequences of metabolic innovations in microbes, the early evolution of animals and plants, and the causes and consequences of major extinction events. Participants will be expected to read and present on current papers in the primary literature.
Terms: Win | Units: 1 | Repeatable 5 times (up to 5 units total)
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints