2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

1 - 10 of 39 results for: GEOLSCI

GEOLSCI 3: Earth and Planetary Processes and Mechanics

This course will introduce you to the applications of solid- and fluid mechanics to understanding the workings of earth and planetary systems. We will explore the use of mass and momentum conservation, as well as rheological / constitutive equations to understand diverse phenomena, ranging from the mass balance of the hydrosphere, the transit of tsunamis across Earth's ocean basins, the flexing of Earth's crust under the weight of mountains and island chains, the transport and disaggregation of rock as it is transported in rivers, the motion of planets, radiative transfer and planetary equilibrium temperature, and the physical causes of global warming.
Terms: Win | Units: 3

GEOLSCI 4: Coevolution of Earth and Life (EARTHSYS 4)

Earth is the only planet in the universe currently known to harbor life. When and how did Earth become inhabited? How have biological activities altered the planet? How have environmental changes affected the evolution of life? In this course, we explore these questions by developing an understanding of life's multi-billion year history using tools from biology, geology, paleontology, and chemistry. We discuss major groups of organisms, when they appear in the rock record, and how they have interacted with the Earth to create the habitats and ecosystems that we are familiar with today.
Terms: Win | Units: 4 | UG Reqs: GER: DB-NatSci, WAY-SMA

GEOLSCI 6: Data Science for Geoscience (EARTHSYS 100A)

This course provides an overview of the most relevant areas of data science to address geoscientific challenges and questions as they pertain to the environment, earth resources & hazards. The focus lies on the methods that treat common characters of geoscientific data: multivariate, multi-scale, compositional, geospatial and space-time. In addition, the course will treat those statistical method that allow a quantification of the human dimension by looking at quantifying impact on humans (e.g. hazards, contamination) and how humans impact the environment (e.g. contamination, land use). The course focuses on developing skills that are not covered in traditional statistics and machine learning courses.
Terms: Win | Units: 3 | UG Reqs: WAY-AQR | Repeatable 3 times (up to 9 units total)
Instructors: Caers, J. (PI)

GEOLSCI 45: Developing and maintaining a habitable Earth: A global challenge?

Did you ever wonder how we got here and where we are going? This course examines how the Earth became habitable for humans after 4.5 billion years of history and where we are headed as we continue to alter the Earth's livable environment. The Earth as we know it today is itself a highly tuned system of linked fluid (oceans and atmosphere) and solid (rock) envelopes that interact to maintain a highly hospitable environment for advanced life forms and civilization. From water to food to energy and mineral resources, we rely on our planet. Was this synergy always the case? Will it continue this way? We will explore how the Earth became habitable, specifically examining how those conditions arose and how they might change in the future, exploring what might happen when we perturb this system. How will the Earth respond and over what time scales? This course, taught by earth scientists who want to continue making our planet habitable for future generations, will also give you the hands on w more »
Did you ever wonder how we got here and where we are going? This course examines how the Earth became habitable for humans after 4.5 billion years of history and where we are headed as we continue to alter the Earth's livable environment. The Earth as we know it today is itself a highly tuned system of linked fluid (oceans and atmosphere) and solid (rock) envelopes that interact to maintain a highly hospitable environment for advanced life forms and civilization. From water to food to energy and mineral resources, we rely on our planet. Was this synergy always the case? Will it continue this way? We will explore how the Earth became habitable, specifically examining how those conditions arose and how they might change in the future, exploring what might happen when we perturb this system. How will the Earth respond and over what time scales? This course, taught by earth scientists who want to continue making our planet habitable for future generations, will also give you the hands on working knowledge of the Earth system and its evolution, and the tools and models we use to understand today's delicately balanced Earth system. It is our hope that at the end of this course you will have deep insights into your origins, your place in the universe, and how best to ensure that Earth remains our home.
Terms: Win | Units: 3 | Repeatable 3 times (up to 9 units total)

GEOLSCI 106: Sediments: The Book of Earth's History

Topics: weathering, erosion and transportation, deposition, origins of sedimentary structures and textures, sediment composition, diagenesis, sedimentary facies, tectonics and sedimentation, and the characteristics of the major siliciclastic and carbonate depositional environments. Required Lab Section: methods of analysis of sediments in hand specimen and thin section. There is a required field problem trips to the field site(s) during the quarter, data collection and analysis, and preparation of a final written and oral report. Prerequisites: 1, 102, 103.
Terms: Win | Units: 3 | UG Reqs: GER: DB-NatSci, WAY-SMA

GEOLSCI 107: Journey to the Center of the Earth (GEOLSCI 207, GEOPHYS 184, GEOPHYS 274)

The interconnected set of dynamic systems that make up the Earth. Focus is on fundamental geophysical observations of the Earth and the laboratory experiments to understand and interpret them. What earthquakes, volcanoes, gravity, magnetic fields, and rocks reveal about the Earth's formation and evolution. In addition to the Tuesday Thursday class meeting, a one-hour weekly section will be arranged and scheduling will be determined at the start of the quarter.
Terms: Win | Units: 3 | UG Reqs: WAY-SMA

GEOLSCI 118Y: Shaping the Future of the Bay Area (CEE 118Y, CEE 218Y, ESS 118Y, ESS 218Y, GEOLSCI 218Y, GEOPHYS 118Y, GEOPHYS 218Y, POLISCI 218Y, PUBLPOL 118Y, PUBLPOL 218Y)

The complex urban problems affecting quality of life in the Bay Area, from housing affordability and transportation congestion to economic vitality and social justice, are already perceived by many to be intractable, and will likely be exacerbated by climate change and other emerging environmental and technological forces. Reforming urban systems to improve the equity, resilience and sustainability of communities will require new collaborative methods of assessment, goal setting, and problem solving across governments, markets, and communities. It will also require academic institutions to develop new models of co-production of knowledge across research, education, and practice. This XYZ course series is designed to immerse students in co-production for social change. The course sequence covers scientific research and ethical reasoning, skillsets in data-driven and qualitative analysis, and practical experience working with local partners on urban challenges that can empower students to drive responsible systems change in their future careers. The Autumn (X) and Winter (Y) courses are focused on basic and advanced skills, respectively, and completion is a prerequisite for participation in the Spring (Z) practicum quarter, which engages teams in real-world projects with Bay Area local governments or community groups. X and Y are composed of four weekly pedagogical components: (A) lectures; (B) writing prompts linked with small group discussion; (C) lab and self-guided tutorials on the R programming language; and (D) R data analysis assignments. Open to undergraduate and graduate students in any major. For more information, visit http://bay.stanford.edu/education. Cardinal Course certified by the Haas Center.
Terms: Win | Units: 1-5 | Repeatable 2 times (up to 10 units total)

GEOLSCI 125: Atmospheric Evolution of Rocky Planets (GEOLSCI 225)

This course will cover formation and evolution of the atmospheres of rocky planets, with a focus on atmospheric chemistry. Topics to be discussed include atmospheric structure, energy balance, chemical equilibrium and kinetics, surface reactions, atmospheric escape, volatile delivery, impacts and volcanic outgassing. Topics will be discussed in the context of both the Solar system (Venus, Earth, Mars, Titan) and extrasolar planet observations. To be offered every other year, Winter or Spring quarter. Topics can be adjusted to suit the needs of the students.
Terms: Win, Spr | Units: 3
Instructors: Schaefer, L. (PI)

GEOLSCI 127: Planetary Science Reading (GEOLSCI 227, GEOPHYS 126, GEOPHYS 226)

The course will meet once a week to discuss a recent journal article related to the broad field of planetary science, including but not limited to cosmochemistry, planet formation, planetary geology, planetary atmospheres, Earth history, astrobiology, and exoplanets. Students will be expected to lead the group discussion at least once per quarter. No formal presentations will be required. There are no prerequisites for this course, but students should have some facility with reading scientific literature.
Terms: Aut, Win | Units: 1 | Repeatable 3 times (up to 3 units total)
Instructors: Schaefer, L. (PI)

GEOLSCI 135: Sedimentary Geochemistry and Analysis (GEOLSCI 235)

Introduction to research methods in sedimentary geochemistry. Proper laboratory techniques and strategies for generating reliable data applicable to any future labwork will be emphasized. This research-based course will examine how the geochemistry of sedimentary rocks informs us about local and global environmental conditions during deposition. Students will collect geochemical data from a measured stratigraphic section in the western United States. These samples will be collected during a four-day field trip at the end of spring break (attendance encouraged but not required). In lab, students will learn low-temperature geochemical techniques focusing on the cycling of biogeochemical elements (O, C, S, and Fe) in marine sediments throughout Earth history. The focus will be on geochemistry of fine-grained siliciclastic rocks (shale) but the geochemistry of carbonates will also be explored. This is a lab-based course complemented with lectures. Students who wish to take the course for less than 4 units must receive approval from the instructor. This course must be taken for a minimum of 3 units and a letter grade to be eligible for Ways credit.
Terms: Win | Units: 1-4 | UG Reqs: WAY-SMA
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints