2018-2019 2019-2020 2020-2021 2021-2022 2022-2023
Browse
by subject...
    Schedule
view...
 

1 - 10 of 24 results for: ESS ; Currently searching spring courses. You can expand your search to include all quarters

ESS 46N: Exploring the Critical Interface between the Land and Monterey Bay: Elkhorn Slough (EARTHSYS 46N)

Preference to freshmen. Field trips to sites in the Elkhorn Slough, a small agriculturally impacted estuary that opens into Monterey Bay, a model ecosystem for understanding the complexity of estuaries, and one of California's last remaining coastal wetlands. Readings include Jane Caffrey's "Changes in a California Estuary: A Profile of Elkhorn Slough". Basics of biogeochemistry, microbiology, oceanography, ecology, pollution, and environmental management.
Terms: Spr | Units: 3 | UG Reqs: WAY-SMA
Instructors: Francis, C. (PI)

ESS 102: Scientific Basis of Climate Change (ESS 202)

This course explores the scientific basis of anthropogenic climate change. We will read the original papers that established the scientific foundation for the climate change forecast. Starting with Fourier's description of the greenhouse effect, we trace the history of the key insights into how humanity is perturbing the climate system. The course is based on "The Warming Papers", edited by David Archer and Raymond Pierrehumbert. Participants take turns presenting and leading a discussion of the papers and of Archer and Pierrehumbert's commentary.
Terms: Spr | Units: 3

ESS 103: Rethinking Meat: An Introduction to Alternative Proteins (EARTHSYS 109, EARTHSYS 209, ESS 203, ETHICSOC 107)

How do we feed a growing population in the face of climate change? Will Impossible Burgers become the new norm? Are you curious to learn about a frontier in bio- and chemical-engineering? Are you passionate about animal rights, human health, and sustainable agriculture? Learn about the environmental, ethical, and economic drivers behind the market for meat replacements. We'll take a deep dive into the science and technology used to develop emerging plant, fermentation and cell-based meat alternatives and explore the political challenges and behavioral adaptation needed to decrease meat consumption. Hear from entrepreneurs, researchers, and innovative startups developing sustainable and marketable alternative proteins through weekly guest lectures from industry leaders.
Terms: Spr | Units: 1-2

ESS 108: Research Preparation for Undergraduates

For undergraduates planning to conduct research during the summer with faculty through the MUIR and SUPER programs. Readings, oral presentations, proposal development. May be repeated for credit.
Terms: Spr | Units: 1

ESS 125: Introduction to Planetary Science (GEOLSCI 124, GEOPHYS 124)

This course provides an introduction to planetary science through the exploration of processes that formed and modified planetary bodies within the Solar System and beyond. Each lecture will be given by an expert in a specific subfield of planetary sciences, with topics ranging from planetary materials and formation, planetary dynamics, planetary structure and tectonics, planetary atmospheres, impact cratering, surface processes, and astrobiology. We will also discuss how scientists investigate planets both near and far through sample analysis, telescopic and orbital remote sensing as well as in situ through robotic instruments. Although there are no prerequisites for this course, it is primarily directed towards undergraduate students who are majoring (or plan to) in the sciences or engineering. A minimum level of mathematics equivalent to high school algebra and introductory calculus will be necessary.
Terms: Spr | Units: 3-4 | UG Reqs: WAY-SMA | Repeatable 3 times (up to 12 units total)

ESS 151: Biological Oceanography (EARTHSYS 151, EARTHSYS 251, ESS 251)

Required for Earth Systems students in the oceans track. Interdisciplinary look at how oceanic environments control the form and function of marine life. Topics include distributions of planktonic production and abundance, nutrient cycling, the role of ocean biology in the climate system, expected effects of climate changes on ocean biology. Local weekend field trips. Designed to be taken concurrently with Marine Chemistry (ESS/ EARTHSYS 152/252).
Terms: Spr | Units: 3-4 | UG Reqs: WAY-SMA
Instructors: Arrigo, K. (PI)

ESS 152: Marine Chemistry (EARTHSYS 152, EARTHSYS 252, ESS 252)

Introduction to the interdisciplinary knowledge and skills required to critically evaluate problems in marine chemistry and related disciplines. Physical, chemical, and biological processes that determine the chemical composition of seawater. Air-sea gas exchange, carbonate chemistry, and chemical equilibria, nutrient and trace element cycling, particle reactivity, sediment chemistry, and diagenesis. Examination of chemical tracers of mixing and circulation and feedbacks of ocean processes on atmospheric chemistry and climate. Designed to be taken concurrently with Biological Oceanography (ESS/ EARTHSYS 151/251)
Terms: Spr | Units: 3-4 | UG Reqs: WAY-SMA, WAY-AQR

ESS 155: Science of Soils (EARTHSYS 155)

Physical, chemical, and biological processes within soil systems. Emphasis is on factors governing nutrient availability, plant growth and production, land-resource management, and pollution within soils. How to classify soils and assess nutrient cycling and contaminant fate. Recommended: introductory chemistry and biology.
Terms: Spr | Units: 3-4 | UG Reqs: GER: DB-NatSci, WAY-SMA

ESS 162: Remote Sensing of Land (EARTHSYS 142, EARTHSYS 242, ESS 262)

The use of satellite remote sensing to monitor land use and land cover, with emphasis on terrestrial changes. Topics include pre-processing data, biophysical properties of vegetation observable by satellite, accuracy assessment of maps derived from remote sensing, and methodologies to detect changes such as urbanization, deforestation, vegetation health, and wildfires.
Terms: Spr | Units: 3 | UG Reqs: WAY-AQR

ESS 202: Scientific Basis of Climate Change (ESS 102)

This course explores the scientific basis of anthropogenic climate change. We will read the original papers that established the scientific foundation for the climate change forecast. Starting with Fourier's description of the greenhouse effect, we trace the history of the key insights into how humanity is perturbing the climate system. The course is based on "The Warming Papers", edited by David Archer and Raymond Pierrehumbert. Participants take turns presenting and leading a discussion of the papers and of Archer and Pierrehumbert's commentary.
Terms: Spr | Units: 3
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints