2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

31 - 40 of 165 results for: artificial intelligence

CS 106E: Exploration of Computing

This course, designed for the non-computer scientist, will provide students with a solid foundation in the concepts and terminology behind computers, the Internet, and software development. It will give you better understanding and insight when working with technology. It will be particularly useful to future managers and PMs who will work with or who will lead programmers and other tech workers. But it will be useful to anyone who wants a better understanding of tech concepts and terms. We'll start by covering the foundations of Computer Hardware, the CPU, Operating Systems, Computer Networks, and the Web. We will then use our foundation to explore a variety of tech-related topics including Computer Security (how computers are attacked and defensive measures that can be taken); Cloud Computing, Artificial Intelligence, Software Development, Human-Computer Interaction, and Computer Theory.nnPrerequisites: Some programming experience at the High School level of above will help students get the most out of the class, but the course can be successfully completed with no prerequisites.
Terms: Spr | Units: 3

CS 120: Introduction to AI Safety (STS 10)

As we delegate more to artificial intelligence (AI) and integrate AI more in societal decision-making processes, we must find answers to how we can ensure AI systems are safe, follow ethical principles, and align with the creator's intent. Increasingly, many AI experts across academia and industry believe there is an urgent need for both technical and societal progress across AI alignment, ethics, and governance to understand and mitigate risks from increasingly capable AI systems and ensure that their contributions benefit society as a whole. Intro to AI Safety explores these questions in lectures with targeted readings, weekly quizzes, and group discussions. We are looking at the capabilities and limitations of current and future AI systems to understand why it is hard to ensure the reliability of existing AI systems. We will cover ongoing research efforts that tackle these questions, ranging from studies in reinforcement learning and computer vision to natural language processing. W more »
As we delegate more to artificial intelligence (AI) and integrate AI more in societal decision-making processes, we must find answers to how we can ensure AI systems are safe, follow ethical principles, and align with the creator's intent. Increasingly, many AI experts across academia and industry believe there is an urgent need for both technical and societal progress across AI alignment, ethics, and governance to understand and mitigate risks from increasingly capable AI systems and ensure that their contributions benefit society as a whole. Intro to AI Safety explores these questions in lectures with targeted readings, weekly quizzes, and group discussions. We are looking at the capabilities and limitations of current and future AI systems to understand why it is hard to ensure the reliability of existing AI systems. We will cover ongoing research efforts that tackle these questions, ranging from studies in reinforcement learning and computer vision to natural language processing. We will study work in interpretability, robustness, and governance of AI systems - to name a few. Basic knowledge about machine learning helps but is not required. View the full syllabus at http://tinyurl.com/42rb2sfv. Enrollment is by application only. Apply online at https://forms.gle/v8msM8nJ5FgeEHx1A by 9:00 PM PDT on Saturday, March 16, 2024.
Terms: Spr | Units: 3

CS 139: Human-Centered AI

Artificial Intelligence technology can and must be guided by human concerns. The course examines how mental models and user models of AI systems are formed, and how that leads to user expectations. This informs a set of design guidelines for building AI systems that are trustworthy, understandable, fair, and beneficial. The course covers the impact of AI systems on the economy and everyday life, and ethical issues of collecting data and running systems, including respect for persons, beneficence, fairness and justice.
Terms: Spr | Units: 3

CS 182: Ethics, Public Policy, and Technological Change (COMM 180, ETHICSOC 182, PHIL 82, POLISCI 182, PUBLPOL 182)

Examination of recent developments in computing technology and platforms through the lenses of philosophy, public policy, social science, and engineering.  Course is organized around five main units: algorithmic decision-making and bias; data privacy and civil liberties; artificial intelligence and autonomous systems; the power of private computing platforms; and issues of diversity, equity, and inclusion in the technology sector.  Each unit considers the promise, perils, rights, and responsibilities at play in technological developments. Prerequisite: CS106A.
Last offered: Winter 2023 | UG Reqs: WAY-ER

CS 202: Law for Computer Science Professionals

Businesses are built on ideas. Today's successful companies are those that most effectively generate, protect, and exploit new and valuable business ideas. Over the past 40 years, intellectual capital has emerged as the leading assets class. Ocean Tomo® estimates that over 80% of the market value of S&P 500 corporations now stems from intangible assets, which consist largely of intellectual property (IP) assets (e.g., the company and product names, logos and designs; patentable inventions; proprietary software and databases, and other proprietary product, manufacturing and marketing information). It is therefore vital for entrepreneurs and other business professionals to have a basic understanding of IP and how it is procured, protected, and exploited. This course provides an overview of the many and varied IP issues that students will confront during their careers. It is intended to be both informative and fun. Classes will cover the basics of patent, trademark, copyright, and trade s more »
Businesses are built on ideas. Today's successful companies are those that most effectively generate, protect, and exploit new and valuable business ideas. Over the past 40 years, intellectual capital has emerged as the leading assets class. Ocean Tomo® estimates that over 80% of the market value of S&P 500 corporations now stems from intangible assets, which consist largely of intellectual property (IP) assets (e.g., the company and product names, logos and designs; patentable inventions; proprietary software and databases, and other proprietary product, manufacturing and marketing information). It is therefore vital for entrepreneurs and other business professionals to have a basic understanding of IP and how it is procured, protected, and exploited. This course provides an overview of the many and varied IP issues that students will confront during their careers. It is intended to be both informative and fun. Classes will cover the basics of patent, trademark, copyright, and trade secret law. Current issues in these areas will be covered, including patent protection for software and business methods, copyrightability of computer programs and APIs, issues relating to artificial intelligence, and the evolving protection for trademarks and trade secrets. Emerging issues concerning the federal Computer Fraud & Abuse Act (CFAA) and hacking will be covered, as will employment issues, including employee proprietary information and invention assignment agreements, work made for hire agreements, confidentiality agreements, non-compete agreements and other potential post-employment restrictions. Recent notable lawsuits will be discussed, including Apple v. Samsung (patents), Alice Corp. v. CLS Bank (software and business method patents), Oracle v. Google (software/APIs), Waymo v. Uber (civil and criminal trade secret theft), and hiQ v. LinkedIn (CFAA). IP law evolves constantly and new headline cases that arise during the term are added to the class discussion. Guest lectures typically include experts on open source software; legal and practical issues confronted by business founders; and, consulting and testifying as an expert in IP litigation. Although many of the issues discussed will involve technology disputes, the course also covers IP issues relating to art, music, photography, and literature. Classes are presented in an open discussion format and they are designed to be enjoyed by students of all backgrounds and areas of expertise.
Terms: Spr | Units: 1
Instructors: Hansen, D. (PI)

CS 207: Antidiscrimination Law and Algorithmic Bias

Human decision making is increasingly being displaced by algorithms. Judges sentence defendants based on "risk scores;" regulators take enforcement actions based on predicted violations; advertisers target materials based on demographic attributes; and employers evaluate applicants and employees based on machine-learned models. A predominant concern with the rise of such algorithmic decision making (machine learning or artificial intelligence) is that it may replicate or exacerbate human bias. Algorithms might discriminate, for instance, based on race or gender. This course surveys the legal principles for assessing bias of algorithms, examines emerging techniques for how to design and assess bias of algorithms, and assesses how antidiscrimination law and the design of algorithms may need to evolve to account for the potential emergence of machine bias. Admission is by consent of instructor and is limited to 20 students. Student assessment is based on class participation, response papers, and a final project. CONSENT APPLICATION: To apply for this course, students must complete and submit a Consent Application Form available on the SLS website ( https://law.stanford.edu/education/courses/consent-of-instructor-forms/). See Consent Application Form for instructions and submission deadline. Course same as LAW 7073
Last offered: Autumn 2022

CS 208E: Great Ideas in Computer Science

Great Ideas in Computer Science Covers the intellectual tradition of computer science emphasizing ideas that reflect the most important milestones in the history of the discipline. Topics include programming and problem solving; implementing computation in hardware; algorithmic efficiency; the theoretical limits of computation; cryptography and security; computer networks; machine learning; and the philosophy behind artificial intelligence. Readings will include classic papers along with additional explanatory material.
Last offered: Autumn 2021

CS 221: Artificial Intelligence: Principles and Techniques

Artificial intelligence (AI) has had a huge impact in many areas, including medical diagnosis, speech recognition, robotics, web search, advertising, and scheduling. This course focuses on the foundational concepts that drive these applications. In short, AI is the mathematics of making good decisions given incomplete information (hence the need for probability) and limited computation (hence the need for algorithms). Specific topics include search, constraint satisfaction, game playing,n Markov decision processes, graphical models, machine learning, and logic. Prerequisites: CS 103 or CS 103B/X, CS 106B or CS 106X, CS 109, and CS 161 (algorithms, probability, and object-oriented programming in Python). We highly recommend comfort with these concepts before taking the course, as we will be building on them with little review.
Terms: Aut, Spr | Units: 3-4

CS 227B: General Game Playing

A general game playing system accepts a formal description of a game to play it without human intervention or algorithms designed for specific games. Hands-on introduction to these systems and artificial intelligence techniques such as knowledge representation, reasoning, learning, and rational behavior. Students create GGP systems to compete with each other and in external competitions. Prerequisite: programming experience. Recommended: 103 or equivalent.
Terms: Spr | Units: 3

CS 231C: Computer Vision and Image Analysis of Art

This course presents the application of rigorous image processing, computer vision, machine learning, computer graphics and artificial intelligence techniques to problems in the history and interpretation of fine art paintings, drawings, murals and other two-dimensional works, including abstract art. The course focuses on the aspects of these problems that are unlike those addressed widely elsewhere in computer image analysis applied to physics-constrained images in photographs, videos, and medical images, such as the analysis of brushstrokes and marks, medium, inferring artists¿ working methods, compositional principles, stylometry (quantification of style), the tracing of artistic influence, and art attribution and authentication. The course revisits classic problems, such as image-based object recognition, but in highly non-realistic, stylized artworks. Recommended: One of CS 131 or EE 168 or equivalent; ARTHIST 1B. Prerequisites: Programming proficiency in at least one of C, C++, Python, Matlab or Mathematica and tools/frameworks such as OpenCV or Matlab's Image Processing toolbox.
Last offered: Autumn 2020
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints