2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 
  COVID-19 Scheduling Updates!
See Stanford's HealthAlerts website for latest updates concerning COVID-19 and academic policies.

211 - 220 of 284 results for: all courses

MATSCI 144: Thermodynamic Evaluation of Green Energy Technologies

Understand the thermodynamics and efficiency limits of modern green technologies such as carbon dioxide capture from air, fuel cells, batteries, and solar-thermal power. Recommended: ENGR 50 or equivalent introductory materials science course. (Formerly 154)
Terms: Spr | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA

MATSCI 151: Microstructure and Mechanical Properties (MATSCI 251)

Primarily for students without a materials background. Mechanical properties and their dependence on microstructure in a range of engineering materials. Elementary deformation and fracture concepts, strengthening and toughening strategies in metals and ceramics. Topics: dislocation theory, mechanisms of hardening and toughening, fracture, fatigue, and high-temperature creep. Undergraduates register in 151 for 4 units; graduates register for 251 in 3 units.
Terms: Aut | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA

MATSCI 152: Electronic Materials Engineering

Materials science and engineering for electronic device applications. Kinetic molecular theory and thermally activated processes; band structure; electrical conductivity of metals and semiconductors; intrinsic and extrinsic semiconductors; elementary p-n junction theory; operating principles of light emitting diodes, solar cells, thermoelectric coolers, and transistors. Semiconductor processing including crystal growth, ion implantation, thin film deposition, etching, lithography, and nanomaterials synthesis.
Terms: Win | Units: 4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA

MATSCI 158: Soft Matter in Biomedical Devices, Microelectronics, and Everyday Life (BIOE 158)

The relationships between molecular structure, morphology, and the unique physical, chemical, and mechanical behavior of polymers and other types of soft matter are discussed. Topics include methods for preparing synthetic polymers and examination of how enthalpy and entropy determine conformation, solubility, mechanical behavior, microphase separation, crystallinity, glass transitions, elasticity, and linear viscoelasticity. Case studies covering polymers in biomedical devices and microelectronics will be covered. Recommended: ENGR 50 and Chem 31A or equivalent.
Last offered: Winter 2020 | UG Reqs: WAY-AQR, WAY-SMA

MATSCI 160: Nanomaterials Laboratory (MATSCI 170)

This course is designed for students interested in exploring the cutting edge of nanoscience and nanotechnology. Students will learn several fundamental concepts related to nanomaterials synthesis and characterization that are commonly used in research and industrial settings. Students will also investigate several applications of nanomaterials through a series of assessments, including self-assembled monolayers, nanowire photovoltaics, and nanoparticles for drug delivery and biomarker screening. In lieu of traditional labs, students will attend weekly discussion sections aimed at priming students to think like a materials engineer. Through these discussions, students will explore how to design an effective experiment, how to identify research gaps, and how to write an effective grant proposal. Enrollment limited to 24. Prerequisites: ENGR 50. Contact instructor for more details. Undergraduates register for 160 for 4 units, Graduates register for 170 for 3 units.
Terms: Aut | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA

MATSCI 161: Energy Materials Laboratory (MATSCI 171)

From early church architecture through modern housing, windows are passages of energy and matter in the forms of light, sound and air. By letting in heat during the summer and releasing it in winter, windows can place huge demands on air conditioning and heating systems, thereby increasing energy consumption and raising greenhouse gas levels in the atmosphere. Latest advances in materials science have enabled precise and on-demand control of electromagnetic radiation through `smart¿ dynamic windows with photochromic and electrochromic materials that change color and optical density in response to light radiance and electrical potential. In this course, we will spend the whole quarter on a project to make and characterize dynamic windows based on one of the electrochromic material systems, the reversible electroplating of metal alloys. There will be an emphasis in this course on characterization methods such as scanning electron microscopy, x-ray photoelectron spectroscopy, optical spectroscopy, four-point probe measurements of conductivity and electrochemical measurements (cyclic voltammetry). The course will finish with students giving presentations on the prospects of using dynamic windows and generic radiation control in cars, homes, commercial buildings or airplanes. Undergraduates register for 161 for 4 units; graduates register for 171 for 3 units.
Terms: Spr | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci, WAY-SMA
Instructors: Hong, G. (PI)

MATSCI 162: X-Ray Diffraction Laboratory (MATSCI 172, PHOTON 172)

Experimental x-ray diffraction techniques for microstructural analysis of materials, emphasizing powder and single-crystal techniques. Diffraction from epitaxial and polycrystalline thin films, multilayers, and amorphorous materials using medium and high resolution configurations. Determination of phase purity, crystallinity, relaxation, stress, and texture in the materials. Advanced experimental x-ray diffraction techniques: reciprocal lattice mapping, reflectivity, and grazing incidence diffraction. Enrollment limited to 20. Undergraduates register for 162 for 4 units; graduates register for 172 for 3 units. Prerequisites: MATSCI 143 or equivalent course in materials characterization.
Terms: Win | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA

MATSCI 165: Nanoscale Materials Physics Computation Laboratory (MATSCI 175)

Computational exploration of fundamental topics in materials science using Java-based computation and visualization tools. Emphasis is on the atomic-scale origins of macroscopic materials phenomena. Simulation methods include molecular dynamics and Monte Carlo with applications in thermodynamics, kinetics, and topics in statistical mechanics. Undergraduates register for 165 for 4 units; graduates register for 175 for 3 units. Prerequisites: Undergraduate physics and MATSCI 144 or equivalent coursework in thermodynamics. MATSCI 145 recommended.
Terms: Win | Units: 3-4 | UG Reqs: WAY-SMA

MATSCI 190: Organic and Biological Materials (MATSCI 210)

Unique physical and chemical properties of organic materials and their uses. The relationship between structure and physical properties, and techniques to determine chemical structure and molecular ordering. Examples include liquid crystals, dendrimers, carbon nanotubes, hydrogels, and biopolymers such as lipids, protein, and DNA. Prerequisite: Thermodynamics and ENGR 50 or equivalent. Undergraduates register for 190 for 4 units; graduates register for 210 for 3 units.
Terms: Spr | Units: 3-4 | UG Reqs: WAY-SMA, WAY-AQR, GER:DB-EngrAppSci

MATSCI 192: Materials Chemistry (MATSCI 202)

An introduction to the fundamental physical chemical principles underlying materials properties. Beginning from basic quantum chemistry, students will learn how the electronic configuration of molecules and solids impacts their structure, stability/reactivity, and spectra. Topics for the course include molecular symmetry, molecular orbital theory, solid-state chemistry, coordination compounds, and nanomaterials chemistry. Using both classroom lectures and journal discussions, students will gain an understanding of and be well-positioned to contribute to the frontiers of materials chemistry, ranging from solar-fuel generation to next-generation cancer treatments. Undergraduates register in 192 for 4 units; graduates register in 202 for 3 units.
Terms: Win | Units: 3-4 | UG Reqs: GER:DB-EngrAppSci, WAY-AQR, WAY-SMA
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints