2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

61 - 70 of 79 results for: CHEM

CHEM 279: Chemophysical analyses of costs to lower atmospheric concentrations of greenhouse gases

Many methods have been proposed to reduce future concentration of CO2, CH4 and other greenhouse gases in the atmosphere from stricter emission regulations, to lower carbon energy sources, to more distribution of existing resources over space and time, to atmospheric capture and sequestration of gases already in the atmosphere. All methods would impose costs in some form. What can chemical and physical analyses tell us about the costs of different approaches? In this graduate-level seminar, students will read primary literature examining the chemical and physical challenges and limitations of various approaches and, by rigorous assessment of the theory and data available to date, will seek to estimate a credible range of future costs for each approach. Prerequisite: Previous study of thermodynamics, kinetics and quantum mechanics at the level of Chemistry 171 and 173.
Last offered: Spring 2020

CHEM 281: Synthesis and Analysis at the Chemistry-Biology Interface

Focus on the combined use of organic chemistry and molecular biology to make, manipulate and measure biomacromolecules, with special focus on DNA and RNA. Synthetic and enzymatic methods for design and construction of oligonucleotides and nucleic acids; methods for bioconjugation and labeling; fluorescence tools; intracellular delivery strategies; selection and evolution methods; CRISPR mechanisms. Prerequisite: One year of undergraduate organic chemistry. Completion of a course in molecular biology is strongly recommended.
Terms: Win | Units: 3

CHEM 283: Therapeutic Science at the Chemistry - Biology Interface

(Formerly Chem 227) Explores the design and enablement of new medicines that were born from a convergence of concepts and techniques from chemistry and biology. Topics include an overview of the drug development process, design of of small molecule medicines with various modes of action, drug metabolism and pharmacogenomics, biologic medicines including protein- and nucleic acid-based therapeutics, glycoscience and glycomimetic drugs, and cell-based medicines derived from synthetic biology. Prerequisite: undergraduate level organic chemistry and biochemistry as well as familiarity with concepts in cell and molecular biology.
Terms: Spr | Units: 3

CHEM 285: Biophysical Chemistry

Primary literature based seminar/discussion course covering classical and contemporary papers in biophysical chemistry. This is intended to provide an introduction to critical analysis of papers in the literature through intensive discussion and evaluation. Topics include (among others): protein structure and stability, folding, single molecule fluorescence and force microscopy, simulations, ion channels, GPCRs, and ribosome structure/function. Course is limited to 15 students and priority will be given to first year Chemistry graduate students.
Terms: Spr | Units: 3

CHEM 287: Visualizing Biomolecules (BIO 218)

(This course is for graduate students only. ) Leveraging high-resolution structural techniques to visualize and understand the function and mechanisms of biological molecules, with an emphasis on proteins. The course covers the theory of modern x-ray diffraction and electron microscopy for macromolecules, provides hands-on experimentation with both techniques and presents case studies from the literature to highlight how these techniques can be leveraged to reveal the mechanisms of action of some of nature's most powerful catalysts.
Terms: Aut | Units: 5

CHEM 289: Concepts and Applications in Chemical Biology (CSB 260)

Current topics include chemical genetics, activity-based probes, inducible protein degradation, DNA/RNA chemistry and molecular evolution, protein labeling, carbohydrate engineering, fluorescent proteins and sensors, optochemical/optogenetic methods, mass spectrometry, and genome-editing technologies.
Terms: Spr | Units: 3
Instructors: Chen, J. (PI)

CHEM 296: Creating and Leading New Ventures in Engineering and Science-based Industries (CHEM 196, CHEMENG 196, CHEMENG 296)

Open to seniors and graduate students interested in the creation of new ventures and entrepreneurship in engineering and science intensive industries such as chemical, energy, materials, bioengineering, environmental, clean-tech, pharmaceuticals, medical, and biotechnology. Exploration of the dynamics, complexity, and challenges that define creating new ventures, particularly in industries that require long development times, large investments, integration across a wide range of technical and non-technical disciplines, and the creation and protection of intellectual property. Covers business basics, opportunity viability, creating start-ups, entrepreneurial leadership, and entrepreneurship as a career. Teaching methods include lectures, case studies, guest speakers, and individual and team projects.
Terms: Spr | Units: 3

CHEM 299: Teaching of Chemistry

Required of all teaching assistants in Chemistry. Techniques of teaching chemistry by means of lectures and labs.
Terms: Aut, Win, Spr, Sum | Units: 1-3 | Repeatable for credit

CHEM 300: Department Colloquium

Required of graduate students. May be repeated for credit.
Terms: Aut, Win, Spr | Units: 1 | Repeatable 15 times (up to 15 units total)
Instructors: Markland, T. (PI)

CHEM 301: Research in Chemistry

Required of graduate students who have passed the qualifying examination. Open to qualified graduate students with the consent of the major professor. Research seminars and directed reading deal with newly developing areas in chemistry and experimental techniques. May be repeated for credit. Search for adviser name on Axess.
Terms: Aut, Win, Spr, Sum | Units: 2 | Repeatable for credit
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints