2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

21 - 30 of 109 results for: BIOE

BIOE 177: Inventing the Future (DESIGN 259)

The famous computer scientist, Alan Kay, once said, "The best way to predict the future is to invent it." As such, we are all responsible for inventing the future we hope we and our descendants will experience. In this highly interactive course, we will be exploring how to predict and invent the future and why this is important by focusing on a wide range of frontier technologies, such as robotics, AI, genomics, autonomous vehicles, blockchain, 3D Printing, VR/AR, synthetic meat, etc. The class will feature debates in which students present utopian and dystopian scenarios, and determine what has to be done to inoculate ourselves against the negative consequences. Limited enrollment. Admission by application: dschool.stanford.edu/classes.
Terms: Win | Units: 3

BIOE 190: Design Thinking in Human Performance Research

This course will introduce you to research areas in human performance and a framework for planning a research project in the area. The course will enable you to gain experience at identifying compelling research needs, pitching research ideas, designing experiments, communicating scientific data and conducting meetings with your mentor to solicit helpful feedback on your work. The course will culminate in the preparation of a research proposal that addresses a research question of interest that you plan to pursue in the near-term.
Terms: Spr | Units: 2

BIOE 191: Bioengineering Problems and Experimental Investigation

Directed study and research for undergraduates on a subject of mutual interest to student and instructor. Prerequisites: consent of instructor and adviser. (Staff)
Terms: Aut, Win, Spr, Sum | Units: 1-5 | Repeatable for credit
Instructors: Abu-Remaileh, M. (PI) ; Altman, R. (PI) ; Andriacchi, T. (PI) ; Appel, E. (PI) ; Bammer, R. (PI) ; Banik, S. (PI) ; Barron, A. (PI) ; Batzoglou, S. (PI) ; Bintu, L. (PI) ; Boahen, K. (PI) ; Brophy, J. (PI) ; Bryant, Z. (PI) ; Butte, A. (PI) ; Camarillo, D. (PI) ; Carter, D. (PI) ; Chiu, W. (PI) ; Cochran, J. (PI) ; Coleman, T. (PI) ; Covert, M. (PI) ; Cremer, J. (PI) ; Daniel, B. (PI) ; Deisseroth, K. (PI) ; Delp, S. (PI) ; Dunn, J. (PI) ; Endy, D. (PI) ; Engel, A. (PI) ; Ennis, D. (PI) ; Eshel, N. (PI) ; Fahrig, R. (PI) ; Feinstein, J. (PI) ; Fischbach, M. (PI) ; Fisher, D. (PI) ; Fordyce, P. (PI) ; Garten, M. (PI) ; Gold, G. (PI) ; Goodman, S. (PI) ; Graves, E. (PI) ; Gurtner, G. (PI) ; Hargreaves, B. (PI) ; Heilshorn, S. (PI) ; Hernandez-Lopez, R. (PI) ; Huang, K. (PI) ; Huang, P. (PI) ; Kornberg, R. (PI) ; Kovacs, G. (PI) ; Krummel, T. (PI) ; Kuhl, E. (PI) ; Lee, J. (PI) ; Levenston, M. (PI) ; Levin, C. (PI) ; Lin, M. (PI) ; Liphardt, J. (PI) ; Longaker, M. (PI) ; Lundberg, E. (PI) ; Moore, T. (PI) ; Nuyujukian, P. (PI) ; Palmer, M. (PI) ; Pasca, S. (PI) ; Pauly, K. (PI) ; Pelc, N. (PI) ; Plevritis, S. (PI) ; Prakash, M. (PI) ; Qi, S. (PI) ; Quake, S. (PI) ; Rogers, K. (PI) ; Sanger, T. (PI) ; Sapolsky, R. (PI) ; Schnitzer, M. (PI) ; Scott, M. (PI) ; Skylar-Scott, M. (PI) ; Smolke, C. (PI) ; Spielman, D. (PI) ; Steinmetz, L. (PI) ; Swartz, J. (PI) ; Tang, S. (PI) ; Taylor, C. (PI) ; Thiam, H. (PI) ; Venook, R. (PI) ; Wakatsuki, S. (PI) ; Wall, J. (PI) ; Wang, B. (PI) ; Wang, P. (PI) ; Woo, J. (PI) ; Wu, J. (PI) ; Yang, F. (PI) ; Yock, P. (PI) ; Zeitzer, J. (PI) ; Zenios, S. (PI)

BIOE 191X: Out-of-Department Advanced Research Laboratory in Bioengineering

Terms: Aut, Win, Spr, Sum | Units: 1-15 | Repeatable 15 times (up to 60 units total)

BIOE 193: Interdisciplinary Approaches to Human Health Research (BIO 193, CHEM 193, CHEMENG 193)

For undergraduate students participating in the Stanford ChEM-H Undergraduate Scholars Program. This course will expose students to interdisciplinary research questions and approaches that span chemistry, engineering, biology, and medicine. Focus is on the development and practice of scientific reading, writing, and presentation skills intended to complement hands-on laboratory research. Students will read scientific articles, write research proposals, make posters, and give presentations.
Last offered: Spring 2020 | Repeatable 11 times (up to 11 units total)

BIOE 199A: Inventing Synthetic Biosystems

Biology as a technology is burgeoning, leading to diverse cultural, economic, geopolitical, and natural outcomes. Students in this course will learn to step back from the overwhelming immediacy of biotechnology's application and to instead adopt a culture of play that enables qualitative expansion of ideas and possibilities. So enriched students will also learn to map ideas onto a future constrained by practical realities and market dynamics. Active in-class participation and a team-based final project are required.
Terms: Spr | Units: 1-2 | Repeatable 2 times (up to 4 units total)

BIOE 201C: Diagnostic Devices Lab (BIOE 301C)

Terms: Spr | Units: 2-5

BIOE 204: Genetic and Epigenetic Engineering

This course will cover the fundamental principles of genetic and epigenetic engineering, starting from the key biological discoveries to the current technological applications. We will be dissecting classic literature, formulating our own scientific questions, and designing experiments or calculations to test our answers. Topics include: gene editing using transposases, integrases and nucleases, gene regulation with a focus on transcriptional control, chromatin-mediated epigenetic regulation, and epigenetic editing.
Terms: Spr | Units: 2

BIOE 206: Mixed-Reality in Medicine (BMP 206, RAD 206)

Mixed reality uses transparent displays to place virtual objects in the user's field of vision such that they can be aligned to and interact with actual objects. This has tremendous potential for medical applications. The course aims to teach the basics of mixed-reality device technology, and to directly connect engineering students to physicians for real-world applications. Student teams will complete guided assignments on developing new mixed-reality technology and a final project applying mixed-reality to solve real medical challenges. Prerequisites: (1) Programming competency in a language such as C, C++. or Python. (2) A basic signal processing course such as EE102B (Digital Signal Processing), while not required, will be helpful. (3) A medical imaging course, while not required, will be helpful. Please contact the instructors with any questions about prerequisites.
Terms: Aut | Units: 3

BIOE 209: Mathematical Modeling of Biological Systems (CME 209)

The course covers mathematical and computational techniques needed to solve advanced problems encountered in applied bioengineering. Fundamental concepts are presented in the context of their application to biological and physiological problems including cancer, cardiovascular disease, infectious disease, and systems biology. Topics include Taylor's Series expansions, parameter estimation, regression, nonlinear equations, linear systems, optimization, numerical differentiation and integration, stochastic methods, ordinary differential equations and Fourier series. Python, Matlab and other software will be used for weekly assignments and projects.Prerequisites: Math 51, 52, 53; prior programming experience (Matlab or other language at level of CS 106a or higher)
Terms: Aut | Units: 3
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints