2018-2019 2019-2020 2020-2021 2021-2022 2022-2023
Browse
by subject...
    Schedule
view...
 

1 - 10 of 46 results for: EARTHSYS ; Currently searching winter courses. You can expand your search to include all quarters

EARTHSYS 38N: The Worst Journey in the World: The Science, Literature, and History of Polar Exploration (ESS 38N, GEOLSCI 38N)

This course examines the motivations and experiences of polar explorers under the harshest conditions on Earth, as well as the chronicles of their explorations and hardships, dating to the 1500s for the Arctic and the 1700s for the Antarctic. Materials include The Worst Journey in the World by Aspley Cherry-Garrard who in 1911 participated in a midwinter Antarctic sledging trip to recover emperor penguin eggs. Optional field trip into the high Sierra in March.
Terms: Win | Units: 3 | UG Reqs: GER: DB-NatSci
Instructors: Dunbar, R. (PI)

EARTHSYS 100A: Data Science for Geoscience (GEOLSCI 6)

This course provides an overview of the most relevant areas of data science to address geoscientific challenges and questions as they pertain to the environment, earth resources & hazards. The focus lies on the methods that treat common characters of geoscientific data: multivariate, multi-scale, compositional, geospatial and space-time. In addition, the course will treat those statistical method that allow a quantification of the human dimension by looking at quantifying impact on humans (e.g. hazards, contamination) and how humans impact the environment (e.g. contamination, land use). The course focuses on developing skills that are not covered in traditional statistics and machine learning courses.
Terms: Win | Units: 3 | UG Reqs: WAY-AQR | Repeatable 3 times (up to 9 units total)

EARTHSYS 101: Energy and the Environment (ENERGY 101)

Energy use in modern society and the consequences of current and future energy use patterns. Case studies illustrate resource estimation, engineering analysis of energy systems, and options for managing carbon emissions. Focus is on energy definitions, use patterns, resource estimation, pollution. Recommended: MATH 21 or 42.
Terms: Win | Units: 3 | UG Reqs: WAY-SMA, GER:DB-EngrAppSci, WAY-AQR

EARTHSYS 105A: Ecology and Natural History of Jasper Ridge Biological Preserve (BIO 105A)

The Ecology and Natural History of the Jasper Ridge Biological Preserve is an upper-division course that aims to help students learn ecology and natural history using a 'living laboratory,' the Jasper Ridge Biological Preserve. The course's central goal is that, as a community of learning, we examine 'via introductory discussions, followed by hands-on experiences in the field' the scientific basis of ecological research, archaeology, edaphology, geology, species interactions, land management, and multidisciplinary environmental education. The first 10 sessions that compose the academic program are led by the instructors, faculty (world-experts on the themes of each session), and JRBP staff. In addition, this 20-week class (winter and spring quarters) trains students to become JRBP Docents that will join the Jasper Ridge education affiliates community. Completion of both Winter ( BIO 105A) and Spring ( BIO 105B) sequence training program is required to join the Ecology and Natural History of Jasper Ridge Biological Preserve course.
Terms: Win | Units: 4

EARTHSYS 110: Introduction to the Foundations of Contemporary Geophysics (GEOPHYS 110)

Introduction to the foundations of contemporary geophysics. Topics drawn from broad themes in: whole Earth geodynamics, geohazards, natural resources, and environment. In each case the focus is on how the interpretation of a variety of geophysical measurements (e.g., gravity, seismology, heat flow, electromagnetics, and remote sensing) can be used to provide fundamental insight into the behavior of the Earth. The course will include a weekend field trip. Prerequisite: CME 100 or MATH 51, or co-registration in either.
Terms: Win | Units: 3 | UG Reqs: WAY-AQR, GER: DB-NatSci, WAY-SMA
Instructors: Beroza, G. (PI)

EARTHSYS 111: Biology and Global Change (BIO 117, EARTHSYS 217, ESS 111)

The biological causes and consequences of anthropogenic and natural changes in the atmosphere, oceans, and terrestrial and freshwater ecosystems. Topics: glacial cycles and marine circulation, greenhouse gases and climate change, tropical deforestation and species extinctions, and human population growth and resource use. Prerequisite: Biology or Human Biology core or BIO 81 or graduate standing.
Terms: Win | Units: 4 | UG Reqs: WAY-SMA, GER: DB-NatSci

EARTHSYS 119: Just Transitions Policy Lab (CSRE 155, URBANST 155)

Building off the work of the Stanford Coalition for Planning an Equitable 2035 (SCoPE), the just transitions policy lab will address transportation justice, housing justice, and labor equity concerns that have been identified by neighboring communities to Stanford and our service workers as part of local land use planning and policy processes. Building on the success of earlier housing justice policy lab initiatives, this course will support ongoing policy engagement in local land use planning process, including housing and transportation justice issues. Key concepts addressed will include environmental justice (EJ) and just transitions frameworks, as well as building awareness of the Bay Area housing crisis. The course will culminate in class projects that will involve working with community partners to address information gaps on worker experiences and housing and transportation needs. We will meet for a weekly 3-hour session. Sessions will prioritize 1) foundational concepts in envi more »
Building off the work of the Stanford Coalition for Planning an Equitable 2035 (SCoPE), the just transitions policy lab will address transportation justice, housing justice, and labor equity concerns that have been identified by neighboring communities to Stanford and our service workers as part of local land use planning and policy processes. Building on the success of earlier housing justice policy lab initiatives, this course will support ongoing policy engagement in local land use planning process, including housing and transportation justice issues. Key concepts addressed will include environmental justice (EJ) and just transitions frameworks, as well as building awareness of the Bay Area housing crisis. The course will culminate in class projects that will involve working with community partners to address information gaps on worker experiences and housing and transportation needs. We will meet for a weekly 3-hour session. Sessions will prioritize 1) foundational concepts in environmental justice 2) current issues in our community related to housing, transportation, and labor equity, 2) peer learning through collective engagement in readings and project planning, 4) community connections related to SCoPE initiatives that deepen existing relationships, and 5) policy analysis related to local land use planning processes. The teaching team will be accepting brief student applications for course participation prior to Winter quarter. To apply for this course, please fill out this google form: https://forms.gle/D3BPeiSEDK9kviJW8 Due December 2 at 11:59pm.
Terms: Win | Units: 3

EARTHSYS 123A: Biosphere-Atmosphere Interactions (EARTHSYS 223, ESS 123, ESS 223)

How do ecosystems respond to climate change, and how can ecosystems affect climate? This course describes, quantitatively and qualitatively, the different feedback mechanisms between the land surface and climate at both local and global scales. We will also discuss how these processes can be measured across earth's diverse ecosystems, and how they are represented in earth system models used to study climate change (and models used to track the feasibility of natural climate solutions). Basic familiarity with programming is helpful.
Terms: Win | Units: 3-4

EARTHSYS 128: Evolution of Terrestrial Ecosystems (BIO 148, BIO 228, GEOLSCI 128, GEOLSCI 228)

The what, when, where, and how do we know it regarding life on land through time. Fossil plants, fungi, invertebrates, and vertebrates (yes, dinosaurs) are all covered, including how all of those components interact with each other and with changing climates, continental drift, atmospheric composition, and environmental perturbations like glaciation and mass extinction. The course involves both lecture and lab components. Graduate students registering at the 200-level are expected to write a term paper, but can opt out of some labs where appropriate.
Terms: Win | Units: 4 | UG Reqs: WAY-SMA
Instructors: Boyce, C. (PI)

EARTHSYS 131: Pathways in Sustainability Careers

Interactive, seminar-style sessions expose students to diverse career pathways in sustainability. Professionals from a variety of careers discuss their work, their career development and decision-points in their career pathways, as well as life style aspects of their choices.
Terms: Win, Spr | Units: 1
Instructors: Saltzman, J. (PI)
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints