2018-2019 2019-2020 2020-2021 2021-2022 2022-2023
Browse
by subject...
    Schedule
view...
 

1 - 10 of 31 results for: BIOE ; Currently searching winter courses. You can expand your search to include all quarters

BIOE 44: Fundamentals for Engineering Biology Lab

An introduction to techniques in genetic, molecular, biochemical, cellular and tissue engineering. Lectures cover advances in the field of synthetic biology with emphasis on genetic engineering, plasmid design, gene synthesis, genetic circuits, and safety and bioethics. Lab modules will teach students how to conduct basic lab techniques, add/remove DNA from living matter, and engineer prokaryotic and eukaryotic cells. Team projects will support practice in component engineering with a focus on molecular design and quantitative analysis of experiments, device and system engineering using abstracted genetically encoded objects, and product development. Concurrent or previous enrollment in BIO 82 or BIO 83.
Terms: Aut, Win | Units: 4 | UG Reqs: WAY-SMA

BIOE 60: Beyond Bitcoin: Applications of Distributed Trust

In the past, people have relied on trusted third parties to facilitate the transactions that define our lives: how we store medical records, how we share genomic information with scientists and drug companies, where we get our news, and how we communicate. Advances in distributed systems and cryptography allow us to eschew such parties. Today, we can create a global, irrefutable ledger of transactions, events, and diagnoses, such that rewriting history is computationally infeasible. What can we build on top of such a powerful data structure? What are the consequences of pseudo-legal contracts and promises written in mathematical ink? In this class, we will bring together experts in cryptography, healthcare, and distributed consensus with students across the university. The first weeks present a technical overview of block chain primitives. In the following weeks, the class will focus on discussing applications and policy issues through lectures and guest speakers from various domains across both academia and industry. Limited enrollment, subject to instructor approval.
Terms: Win | Units: 1
Instructors: Liphardt, J. (PI)

BIOE 122: BioSecurity and Pandemic Resilience (EMED 122, EMED 222, PUBLPOL 122, PUBLPOL 222)

Overview of the most pressing biosecurity issues facing the world today, with a special focus on the COVID-19 pandemic. Critical examination of ways of enhancing biosecurity and pandemic resilience to the current and future pandemics. Examination of how the US and the world are able to withstand a pandemic or a bioterrorism attack, how the medical/healthcare field, government, and technology sectors are involved in biosecurity and pandemic or bioterrorism preparedness and response and how they interface; the rise of synthetic biology with its promises and threats; global bio-surveillance; effectiveness of various containment and mitigation measures; hospital surge capacity; medical challenges; development, production, and distribution of countermeasures such as vaccines and drugs; supply chain challenges; public health and policy aspects of pandemic preparedness and response; administrative and engineering controls to enhance pandemic resilience; testing approaches and challenges; prom more »
Overview of the most pressing biosecurity issues facing the world today, with a special focus on the COVID-19 pandemic. Critical examination of ways of enhancing biosecurity and pandemic resilience to the current and future pandemics. Examination of how the US and the world are able to withstand a pandemic or a bioterrorism attack, how the medical/healthcare field, government, and technology sectors are involved in biosecurity and pandemic or bioterrorism preparedness and response and how they interface; the rise of synthetic biology with its promises and threats; global bio-surveillance; effectiveness of various containment and mitigation measures; hospital surge capacity; medical challenges; development, production, and distribution of countermeasures such as vaccines and drugs; supply chain challenges; public health and policy aspects of pandemic preparedness and response; administrative and engineering controls to enhance pandemic resilience; testing approaches and challenges; promising technologies for pandemic response and resilience, and other relevant topics. Guest lecturers have included former Secretary of State Condoleezza Rice, former Special Assistant on BioSecurity to Presidents Clinton and Bush Jr. Dr. Ken Bernard, former Assistant Secretary of Health and Human Services Dr. Robert Kadlec, eminent scientists, public health leaders, innovators and physicians in the field, and leaders of relevant technology companies. Open to medical, graduate, and undergraduate students. No prior background in biology necessary. Must be taken for at least 4 units to get WAYs credit. Students also have an option to take the class for 2 units as a speaker series/seminar where they attend half the class sessions (or more) and complete short weekly assignments. In -person, asynchronous synchronous online instruction are available.
Terms: Win | Units: 2-5 | UG Reqs: GER:EC-GlobalCom, GER: DB-NatSci, WAY-SI | Repeatable 3 times (up to 15 units total)
Instructors: Trounce, M. (PI)

BIOE 123: Bioengineering Systems Prototyping Lab

The Bioengineering System Prototyping Laboratory is a fast-paced, team-based system engineering experience, in which teams of 2-3 students design and build a bioengineering-relevant system (e.g., centrifuge) that meets a set of common requirements along with a set of unique team-determined requirements. Students learn-by-doing hands-on skills in electronics and mechanical design and fabrication. Teams also develop process skills and an engineering mindset by aligning specifications with requirements, developing output metrics and measuring performance, and creating project proposals and plans. The course culminates in demonstration of a fully functioning system that meets the teams' self-determined metrics. Learning goals: 1) Design, fabricate, integrate, and characterize practical electronic and mechanical hardware systems that meet clear requirements in the context of Bioengineering (i.e., build something that works). 2) Use prototyping tools, techniques, and instruments, including: more »
The Bioengineering System Prototyping Laboratory is a fast-paced, team-based system engineering experience, in which teams of 2-3 students design and build a bioengineering-relevant system (e.g., centrifuge) that meets a set of common requirements along with a set of unique team-determined requirements. Students learn-by-doing hands-on skills in electronics and mechanical design and fabrication. Teams also develop process skills and an engineering mindset by aligning specifications with requirements, developing output metrics and measuring performance, and creating project proposals and plans. The course culminates in demonstration of a fully functioning system that meets the teams' self-determined metrics. Learning goals: 1) Design, fabricate, integrate, and characterize practical electronic and mechanical hardware systems that meet clear requirements in the context of Bioengineering (i.e., build something that works). 2) Use prototyping tools, techniques, and instruments, including: CAD, 3D printing, laser cutting, microcontrollers, and oscilloscopes. 3) Create quantitative system specifications and test measurement plans to demonstrate that a design meets user requirements. 4) Communicate design elements, choices, specifications, and performance through design reviews and written reports. 5) Collaborate as a team member on a complex system design project (e.g., a centrifuge). Limited enrollment, with priority for Bioengineering undergraduates. Prerequisites: Physics 43, or equivalent. Experience with Matlab and/or Python is recommended.
Terms: Win | Units: 4 | UG Reqs: WAY-SMA

BIOE 141B: Senior Capstone Design II

Lecture/Lab. Second course of two-quarter capstone sequence. Team based project introduces students to the process of designing new biological technologies to address societal needs. Emphasis is on implementing and testing the design from the first quarter with the at least one round of prototype iteration. Guest lectures and practical demonstrations are incorporated. Prerequisites: BIOE123 and BIOE44. This course is open only to seniors in the undergraduate Bioengineering program. IMPORTANT NOTE: class meets in Shriram 112.
Terms: Win | Units: 4

BIOE 177: Inventing the Future (DESIGN 259)

The famous computer scientist, Alan Kay, once said, "The best way to predict the future is to invent it." As such, we are all responsible for inventing the future we hope we and our descendants will experience. In this highly interactive course, we will be exploring how to predict and invent the future and why this is important by focusing on a wide range of frontier technologies, such as robotics, AI, genomics, autonomous vehicles, blockchain, 3D Printing, VR/AR, synthetic meat, etc. The class will feature debates in which students present utopian and dystopian scenarios, and determine what has to be done to inoculate ourselves against the negative consequences. Limited enrollment. Admission by application: dschool.stanford.edu/classes.
Terms: Win | Units: 3

BIOE 191: Bioengineering Problems and Experimental Investigation

Directed study and research for undergraduates on a subject of mutual interest to student and instructor. Prerequisites: consent of instructor and adviser. (Staff)
Terms: Aut, Win, Spr, Sum | Units: 1-5 | Repeatable for credit
Instructors: Abu-Remaileh, M. (PI) ; Altman, R. (PI) ; Andriacchi, T. (PI) ; Appel, E. (PI) ; Bammer, R. (PI) ; Barron, A. (PI) ; Batzoglou, S. (PI) ; Bintu, L. (PI) ; Boahen, K. (PI) ; Brophy, J. (PI) ; Bryant, Z. (PI) ; Butte, A. (PI) ; Camarillo, D. (PI) ; Carter, D. (PI) ; Cochran, J. (PI) ; Coleman, T. (PI) ; Covert, M. (PI) ; Daniel, B. (PI) ; Deisseroth, K. (PI) ; Delp, S. (PI) ; Endy, D. (PI) ; Engel, A. (PI) ; Ennis, D. (PI) ; Eshel, N. (PI) ; Fahrig, R. (PI) ; Feinstein, J. (PI) ; Fischbach, M. (PI) ; Fisher, D. (PI) ; Fordyce, P. (PI) ; Gambhir, S. (PI) ; Garten, M. (PI) ; Gold, G. (PI) ; Goodman, S. (PI) ; Graves, E. (PI) ; Gurtner, G. (PI) ; Hargreaves, B. (PI) ; Heilshorn, S. (PI) ; Hernandez-Lopez, R. (PI) ; Huang, K. (PI) ; Huang, P. (PI) ; Kornberg, R. (PI) ; Kovacs, G. (PI) ; Krummel, T. (PI) ; Kuhl, E. (PI) ; Lee, J. (PI) ; Levenston, M. (PI) ; Levin, C. (PI) ; Lin, M. (PI) ; Liphardt, J. (PI) ; Longaker, M. (PI) ; Lundberg, E. (PI) ; Moore, T. (PI) ; Nuyujukian, P. (PI) ; Palmer, M. (PI) ; Pauly, K. (PI) ; Pelc, N. (PI) ; Plevritis, S. (PI) ; Prakash, M. (PI) ; Qi, S. (PI) ; Quake, S. (PI) ; Rogers, K. (PI) ; Sanger, T. (PI) ; Sapolsky, R. (PI) ; Schnitzer, M. (PI) ; Scott, M. (PI) ; Shenoy, K. (PI) ; Skylar-Scott, M. (PI) ; Smolke, C. (PI) ; Spielman, D. (PI) ; Steinmetz, L. (PI) ; Swartz, J. (PI) ; Taylor, C. (PI) ; Thiam, H. (PI) ; Venook, R. (PI) ; Wakatsuki, S. (PI) ; Wall, J. (PI) ; Wang, B. (PI) ; Wang, P. (PI) ; Woo, J. (PI) ; Wu, J. (PI) ; Yang, F. (PI) ; Yock, P. (PI) ; Zeitzer, J. (PI) ; Zenios, S. (PI)

BIOE 191X: Out-of-Department Advanced Research Laboratory in Bioengineering

Terms: Aut, Win, Spr, Sum | Units: 1-15 | Repeatable 15 times (up to 60 units total)

BIOE 220: Introduction to Imaging and Image-based Human Anatomy (BMP 220, RAD 220)

Focus on learning the fundamentals of each imaging modality including X-ray Imaging, Ultrasound, CT, and MRI, to learn normal human anatomy and how it appears on medical images, to learn the relative strengths of the modalities, and to answer, "What am I looking at?" Course website:  http://bioe220.stanford.edu
Terms: Win | Units: 3
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints