2019-2020 2020-2021 2021-2022 2022-2023 2023-2024
Browse
by subject...
    Schedule
view...
 

1 - 10 of 58 results for: ESS ; Currently searching offered courses. You can also include unoffered courses

ESS 8: The Oceans: An Introduction to the Marine Environment (EARTHSYS 8)

The course will provide a basic understanding of how the ocean functions as a suite of interconnected ecosystems, both naturally and under the influence of human activities. Emphasis is on the interactions between the physical and chemical environment and the dominant organisms of each ecosystem. The types of ecosystems discussed include coral reefs, deep-sea hydrothermal vents, coastal upwelling systems, blue-water oceans, estuaries, and near-shore dead zones. Lectures, multimedia presentations, group activities, and tide-pooling day trip.
Terms: Spr | Units: 4 | UG Reqs: WAY-SMA
Instructors: Arrigo, K. (PI)

ESS 14N: Sustainable Adaptation

How do we adapt to the rapid global environmental changes that are happening around us? How do we do so in a way that is sustainable, enhancing human and environmental wellbeing, now and in the future? In this course, we will explore these questions through an interdisciplinary lens, drawing from the social sciences, engineering, and public health. We will focus on people¿s responses to a range of impacts related to global environmental change from sea level rise to extreme weather events. Example responses include changes in fishing practices, taking protective action during wildfires or hurricanes, and migrating to a new location. Often, we will draw case studies from frontline communities, those who experience the "first and worst" of global environmental changes. Through readings, film, and field trips, we will ask what adaptation to global environmental change is, what does it mean to be sustainable, and how can it be sustained.
Terms: Aut | Units: 3

ESS 16N: Island Ecology

Preference to freshmen. How ecologists think about the world. Focus is on the Hawaiian Islands: origin, geology, climate, evolution and ecology of flora and fauna, and ecosystems. The reasons for the concentration of threatened and endangered species in Hawaii, the scientific basis for their protection and recovery. How knowledge of island ecosystems can contribute to ecology and conservation biology on continents.
Terms: Aut | Units: 3 | UG Reqs: GER: DB-NatSci
Instructors: Vitousek, P. (PI)

ESS 38N: The Worst Journey in the World: The Science, Literature, and History of Polar Exploration (EARTHSYS 38N, EPS 38N)

(Formerly GEOLSCI 38N) This course examines the motivations and experiences of polar explorers under the harshest conditions on Earth, as well as the chronicles of their explorations and hardships, dating to the 1500s for the Arctic and the 1700s for the Antarctic. Materials include The Worst Journey in the World by Aspley Cherry-Garrard who in 1911 participated in a midwinter Antarctic sledging trip to recover emperor penguin eggs. Optional field trip into the high Sierra in March. Change of Department Name: Earth and Planetary Science (Formerly Geologic Sciences).
Terms: Aut | Units: 3 | UG Reqs: GER: DB-NatSci

ESS 46N: Exploring the Critical Interface between the Land and Monterey Bay: Elkhorn Slough (EARTHSYS 46N)

Preference to freshmen. Field trips to sites in the Elkhorn Slough, a small agriculturally impacted estuary that opens into Monterey Bay, a model ecosystem for understanding the complexity of estuaries, and one of California's last remaining coastal wetlands. Readings include Jane Caffrey's "Changes in a California Estuary: A Profile of Elkhorn Slough". Basics of biogeochemistry, microbiology, oceanography, ecology, pollution, and environmental management.
Terms: Spr | Units: 3 | UG Reqs: WAY-SMA

ESS 65N: How to make a tornado (and other flows in the atmosphere and ocean)

In this seminar students explore the physics of atmospheric and oceanic flows experientially using rotating tanks of water on small turntables provided to students in the class. Different flow phenomena from tornado formation, ocean gyres, to hurricane propagation are introduced each week and experiments are designed to simulate them. The experiments, like the oceanic and atmospheric motions they are simulating, can be visually stunning, like pieces of fluid artwork, and the students will learn various visualization techniques to draw out their beauty. The goal is for students to practice the scientific method while gaining an understanding and appreciation for how the ocean and atmosphere work.
Terms: Win | Units: 3 | UG Reqs: WAY-SMA
Instructors: Thomas, L. (PI)

ESS 71: Planet Ocean (BIO 71, OCEANS 71)

Oceans make up the majority of our planet's area and living spaces and are fundamental to biodiversity, climate, food and commerce.This course covers integration of the oceanography and marine biology of diverse ocean habitats such as the deep sea, coral reefs, open ocean, temperate coasts, estuaries and polar seas. Lectures include state of the art knowledge as well as emerging technologies for future exploration. The second section focuses on how the oceans link to the global environment, and how ocean capacity helps determine human sustainability.
Terms: Win | Units: 4 | UG Reqs: WAY-SMA

ESS 102: Scientific Basis of Climate Change (ESS 202)

This course explores the scientific basis of anthropogenic climate change. We will read the original papers that established the scientific foundation for the climate change forecast. Starting with Fourier's description of the greenhouse effect, we trace the history of the key insights into how humanity is perturbing the climate system. The course is based on "The Warming Papers", edited by David Archer and Raymond Pierrehumbert. Participants take turns presenting and leading a discussion of the papers and of Archer and Pierrehumbert's commentary.
Terms: Spr | Units: 3

ESS 103: Rethinking Meat: An Introduction to Alternative Proteins (EARTHSYS 109, EARTHSYS 209, ESS 203, ETHICSOC 107)

How do we feed a growing population in the face of climate change? Will Impossible Burgers become the new norm? Are you curious to learn about a frontier in bio- and chemical-engineering? Are you passionate about animal rights, human health, and sustainable agriculture? Learn about the environmental, ethical, and economic drivers behind the market for meat replacements. We'll take a deep dive into the science and technology used to develop emerging plant, fermentation and cell-based meat alternatives and explore the political challenges and behavioral adaptation needed to decrease meat consumption. Hear from entrepreneurs, researchers, and innovative startups developing sustainable and marketable alternative proteins through weekly guest lectures from industry leaders.
Terms: Spr | Units: 1-2

ESS 106: World Food Economy (EARTHSYS 106, EARTHSYS 206, ECON 106, ECON 206, ESS 206)

The World Food Economy is a survey course that covers the economic and political dimensions of food production, consumption, and trade. The course focuses on food markets and food policy within a global context. It is comprised of three major sections: structural features (agronomic, technological, and economic) that determine the nature of domestic food systems; the role of domestic food and agricultural policies in international markets; and the integrating forces of international research, trade, and food aid in the world food economy. This 5-unit course entails a substantial group modeling project that is required for all students. Enrollment is by application only. The application is found at https://economics.stanford.edu/undergraduate/forms. Applications will be reviewed on a first-come, first-serve basis, and priority will be given to upper-level undergraduates who need the course for their major, and to graduate students pursuing work directly related to the course. The application submission period will close on March 15
Terms: Spr | Units: 5 | UG Reqs: WAY-SI
Filter Results:
term offered
updating results...
teaching presence
updating results...
number of units
updating results...
time offered
updating results...
days
updating results...
UG Requirements (GERs)
updating results...
component
updating results...
career
updating results...
© Stanford University | Terms of Use | Copyright Complaints